

#### **DECLARATION OF PERFORMANCE**



DoP: 0154

for fischer Power-Fast screws and fischer construction screws (Screws for use in timber constructions) - EN

- 1. Unique identification code of the product-type: DoP: 0154
- 2. Intended use/es: For connections in load bearing timber constructions or for fixing of thermal insulation on rafters
- 3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, 72178 Waldachtal, Germany
- 4. Authorised representative: --
- 5. System/s of AVCP: 3
- 6. European Assessment Document: EAD 130118-00-0603

European Technical Assessment: ETA-11/0027; 2019-01-02

Technical Assessment Body: ETA-Danmark A/S

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1), Safety in use (BWR 4)

Tensile strength
Screws made of carbon steel

Characteristic value f<sub>tens,k</sub>:

Screw d = 3,0 mm: 2,7 kN Screw d = 3,5 mm: 3,7 kN Screw d = 4,0 mm: 4,8 kN Screw d = 4,5 mm: 6,0 kN Screw d = 5,0 mm: 7,5 kN Screw d = 6,0 mm: 10,7 kN Screw d = 8,0 mm: 19,1 kN Screw d = 10,0 mm: 29,8 kN Screw d = 12,0 mm: 32,7 kN

Screws made of stainless steel

Screw d = 3,0 mm: 1,6 kN Screw d = 3,5 mm: 2,1 kN Screw d = 4,0 mm: 2,8 kN Screw d = 4,5 mm: 3,5 kN Screw d = 5,0 mm: 4,3 kN Screw d = 6,0 mm: 6,2 kN Screw d = 8,0 mm: 13,0 kN

Insertion moment

Ratio of the characteristic torsional strength to the mean insertion moment:

 $f_{tor,k}$  /  $R_{tor,mean} \ge 1.5$ 

Torsional strength
Screws made of carbon steel

Characteristic value f<sub>tor,k</sub>:

Screw d = 3,0 mm: 1,3 Nm Screw d = 3,5 mm: 2,0 Nm Screw d = 4,0 mm: 3,0 Nm Screw d = 4,5 mm: 4,3 Nm Screw d = 5,0 mm: 6,0 Nm Screw d = 6,0 mm: 9,5 Nm Screw d = 8,0 mm: 25,0 Nm Screw d = 10,0 mm: 40,0 Nm Screw d = 12,0 mm: 55,0 Nm

#### Screws made of stainless steel

Screw d = 3,0 mm: 0,9 Nm Screw d = 3,5 mm: 1,3 Nm Screw d = 4,0 mm: 1,9 Nm Screw d = 4,5 mm: 2,6 Nm Screw d = 5,0 mm: 3,7 Nm Screw d = 6,0 mm: 6,5 Nm Screw d = 8,0 mm: 16,0 Nm

#### Safety in case of fire (BWR 2)

• Reaction to fire: Anchorages satisfy requirements for Class A 1

Sustainable use of natural resources (BWR 7) NPD

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

1. V. A. Bull i. V. W. Mylal

Signed for and on behalf of the manufacturer by:

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

Tumlingen, 2019-01-09

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.



ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Appendix and notified according to Article 29 of the Regulation (EU)
No 305/2011 of the European
Parliament and of the Council of 9
March 2011



# European Technical Assessment ETA-11/0027 of 2019/01/02

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

fischer Power-Fast screws and fischer construction screws

Product family to which the above construction product belongs:

Screws for use in timber constructions

Manufacturer:

fischerwerke GmbH & Co. KG Klaus-Fischer-Str. 1 72178 Waldachtal GERMANY

**Manufacturing plant:** 

fischerwerke

This European Technical Assessment contains:

41 pages including 4 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: European Assessment document (EAD) no. EAD 130118-00-0603 "Screws for timber constructions"

This version replaces:

The previous ETA with the same number issued on 2013-06-26 and expiry on 2018-06-26

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

# II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

# 1 Technical description of product and intended use

### Technical description of the product

"fischer Power-Fast" and "fischer construction screws" are self-tapping screws to be used in timber structures. "fischer Power-Fast" screws shall be threaded over a part or over the full length. "fischer construction screws" shall be threaded over a part of the length. The screws shall be produced from carbon steel wire for nominal diameters of 3,0 mm to 12,0 mm and from stainless steel wire for nominal diameters of 3,0 mm to 8,0 mm. The material specification of the stainless steel screws is deposited with ETA-Danmark. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592.

## **Geometry and Material**

The nominal diameter (outer thread diameter), d, shall not be less than 3,0 mm and shall not be greater than 12,0 mm. The overall length, L, of screws shall not be less than 20 mm and shall not be greater than 600 mm. Other dimensions are given in Annex A1 to Annex A19.

The ratio of inner thread diameter to outer thread diameter  $d_i/d$  ranges from 0,59 to 0,69.

The screws are threaded over a minimum length  $\ell_g$  of 4,0·d (i.e.  $\ell_g \ge 4,0$ ·d).

The lead p (distance between two adjacent thread flanks) ranges from 0,50·d to 0,67·d.

No breaking of screws shall be observed at a bend angle,  $\alpha$ , of less than  $(45/d^{0.7}+20)$  degrees.

The material specification of the of the stainless steel screws is deposited with ETA-Danmark.

# 2 Specification of the intended use in accordance with the applicable EAD

The screws are used for connections in load bearing timber structures between members of solid timber (softwood and hardwood). Furthermore, all kinds of processed timber products (all softwood and hardwood as well), such as glued laminated timber, cross-laminated timber, laminated veneer lumber, similar glued members, wood-based panels or steel.

Furthermore "fischer Power-Fast" screws with diameter of 6 mm, 8 mm, 10 mm and 12 mm may also be used for the fixing of heat insulation on rafters and on vertical facades.

Steel plates and wood-based panels except solid wood panels, Egger OSB Eurostrand 4 TOP and cross laminated timber shall only be located on the side of the screw head. The following wood-based panels may be used:

- Plywood according to EN 636 or ETA
- Particleboard according to EN 312 or ETA
- Oriented Strand Board, Type OSB/3 and OSB/4 according to EN 300 or ETA
- Fibreboard according to EN 622-2 and 622-3 or ETA (minimum density 650 kg/m³)
- Cement bonded particleboard according to ETA
- Solid wood panels according to EN 13353 and EN 13986, and cross laminated timber according to ETA
- Laminated Veneer Lumber according to EN 14374 or ETA
- Engineered wood products according to ETA if the ETA of the product includes provisions for the use of self-tapping screws, the provisions of the ETA of the engineered wood product apply

The screws shall be screwed into softwood without predrilling or after pre-drilling with a diameter not larger than the inner thread diameter for the length of the threaded part and with a maximum of the smooth shank diameter for the length of the smooth shank. The screws shall be driven into hardwood after pre-drilling with a suitable diameter according to section 3.11.

The screws are intended to be used in timber connections for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation 305/2011 shall be fulfilled.

Form and dimensions of washers are given in Annex A20. Washers must be made of steel.

The design of the connections shall be based on the characteristic load-carrying capacities of the screws. The design capacities shall be derived from the characteristic capacities in accordance with Eurocode 5 or an appropriate national code (e.g. DIN 1052:2008-12). Regarding environmental conditions, national provisions at the building site shall apply.

The screws are intended for use for connections subject to static or quasi static loading.

The zinc-coated screws are for use in timber structures subject to the dry, internal conditions defined by the service classes 1 and 2 of EN 1995-1-1:2008 (Eurocode 5).

The screws made of stainless steel meet the requirements of Eurocode 5 (EN 1995-1-1:2008), for use in structures subject to the wet conditions defined as service class 3.

The scope of the screws regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the screws of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

| Characteristi | ic                                        | Assessment of characteristic                                                                                                                                                                                                                                                      |
|---------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.1 Mech      | nanical resistance and stability*) (BWR1) |                                                                                                                                                                                                                                                                                   |
|               | strength<br>made from carbon steel        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                              |
| Screws        | from stainless steel                      | Screw d = 3,0 mm: 1,6 kN<br>Screw d = 3,5 mm: 2,1 kN<br>Screw d = 4,0 mm: 2,8 kN<br>Screw d = 4,5 mm: 3,5 kN<br>Screw d = 5,0 mm: 4,3 kN<br>Screw d = 6,0 mm: 6,2 kN<br>Screw d = 8,0 mm: 13,0 kN                                                                                 |
| Insertio      | on moment                                 | Ratio of the characteristic torsional strength to the mean insertion moment: $f_{tor,k} \ / \ R_{tor,mean} \ge 1,5$                                                                                                                                                               |
|               | nal strength from carbon steel            | Characteristic value $f_{tor,k}$ :  Screw d = 3,0 mm: 1,3 Nm  Screw d = 3,5 mm: 2,0 Nm  Screw d = 4,0 mm: 3,0 Nm  Screw d = 4,5 mm: 4,3 Nm  Screw d = 5,0 mm: 6,0 Nm  Screw d = 6,0 mm: 9,5 Nm  Screw d = 8,0 mm: 25,0 Nm  Screw d = 10,0 mm: 40,0 Nm  Screw d = 12,0 mm: 55,0 Nm |
| Screws        | from stainless steel                      | Screw d = 3,0 mm:       0,9 Nm         Screw d = 3,5 mm:       1,3 Nm         Screw d = 4,0 mm:       1,9 Nm         Screw d = 4,5 mm:       2,6 Nm         Screw d = 5,0 mm:       3,7 Nm         Screw d = 6,0 mm:       6,5 Nm         Screw d = 8,0 mm:       16,0 Nm         |
| 3.2 Safety    | y in case of fire (BWR2)                  |                                                                                                                                                                                                                                                                                   |
| React         | cion to fire                              | The screws are made from steel classified as <b>Euroclass A1</b> in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364.                                                                                                                                      |

| Char | racteristic                                            | Assessment of characteristic |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|------|--------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 3.7  | Sustainable use of natural resources (BR7)             |                              | No Performance Assessed                                                                                                                                                                                                                |  |  |  |  |  |  |
| 3.8  | General aspects related to the performance the product | of                           | The screws have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service classes 1, 2 and 3 |  |  |  |  |  |  |
|      | Identification                                         |                              | See Annex A                                                                                                                                                                                                                            |  |  |  |  |  |  |

<sup>\*)</sup> See additional information in section 3.9 – 3.12.

\*\*) In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

#### 3.9 Mechanical resistance and stability

The load-carrying capacities for "fischer Power-Fast" and "fischer construction screws" are applicable to the wood-based materials mentioned in paragraph 1 even though the term timber has been used in the following.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of "fischer Power-Fast" and "fischer construction screws" screws should be used for designs in accordance with Eurocode 5 or an appropriate national code.

Pointside penetration length of the threaded part must be  $\ell_{\rm ef} \ge 4 \cdot d$ , where d is the outer thread diameter of the screw. For the fixing of rafters, point side penetration must be at least 40 mm,  $\ell_{\rm ef} > 40$  mm.

ETA's for structural members may be considered if applicable.

For wood-based panels the relevant ETAs must be considered where applicable.

### Lateral load-carrying capacity

The characteristic lateral load-carrying capacity of "fischer Power-Fast" and "fischer construction screws" screws shall be calculated according to EN 1995-1-1:2008 (Eurocode 5) using the outer thread diameter d as the nominal diameter of the screw. The contribution from the rope effect may be considered.

The characteristic yield moment shall be calculated from:

Screws from carbon steel for 3,0 mm  $\leq$  d  $\leq$  5,0 mm and 12,0 mm:

$$M_{y,k} = 0.15 \cdot 500 \text{ (N/mm}^2) \cdot d^{2.6}$$
 [Nmm]

Screws from carbon steel for 6,0 mm  $\leq$  d  $\leq$  10,0 mm:  $M_{y,k} = 0.15 \cdot 600 \; (N/mm^2) \cdot d^{2,6} \qquad \qquad [Nmm]$ 

Screws from stainless steel for 3,0 mm < d < 6,0 mm:  $M_{v,k} = 0.15 \cdot 350 \text{ (N/mm}^2) \cdot d^{2.6}$  [Nmm]

Screws from stainless steel for d = 8,0 mm:  $M_{y,k} = 0.15 \cdot 400 \; (N/mm^2) \cdot d^{2.6} \eqno [Nmm]$ 

where

d outer thread diameter [mm]

The embedding strength for screws in non-pre-drilled holes arranged at an angle between screw axis and grain direction,  $0^{\circ} \le \alpha \le 90^{\circ}$  is:

$$f_{h,k} = \frac{0.082 \cdot \rho_k \cdot d^{-0.3}}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$$
 [N/mm<sup>2</sup>]

and accordingly, for screws in pre-drilled holes:

$$f_{h,k} = \frac{0.082 \cdot \rho_k \cdot (1 - 0.01 \cdot d)}{2.5 \cdot \cos^2 \alpha + \sin^2 \alpha}$$
 [N/mm<sup>2</sup>]

Where

 $\rho_k$  characteristic timber density [kg/m<sup>3</sup>];

d outer thread diameter [mm];

α angle between screw axis and grain direction.

The embedding strength for screws arranged parallel to the plane surface of cross laminated timber, independent of the angle between screw axis and grain direction,  $0^{\circ} \le \alpha \le 90^{\circ}$ , may be calculated from:

$$f_{h,k} = 20 \cdot d^{-0,5} \end{[N/mm^2]}$$

Where

d outer thread diameter [mm]

The embedding strength for screws in the plane surface of cross laminated timber should be assumed as for solid timber based on the characteristic density of the outer layer. If relevant, the angle between force and grain direction of the outer layer should be taken into account.

The direction of the lateral force shall be perpendicular to the screw axis and parallel to the plane surface of the cross laminated timber.

### Axial withdrawal capacity

The characteristic axial withdrawal capacity of "fischer Power-Fast" and "fischer construction screws" in solid timber (softwood and ash, beech or oak hardwood), glued laminated timber (softwood and hardwood, ash, beech or oak), laminated veneer lumber (softwood or hardwood beech) or cross-laminated timber members at an angle of  $0^{\circ} \leq \alpha \leq 90^{\circ}$  to the grain or in Egger Eurostrand OSB 4 TOP at an angle of  $\alpha = 90^{\circ}$  to the panel surface shall be calculated from:

$$F_{ax,\alpha,Rk} = n_{ef} \cdot k_{ax} \cdot f_{ax,k} \cdot d \cdot \ell_{ef} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
 [N]

Where

 $F_{ax,\alpha,RK}$  Characteristic withdrawal capacity of the connection at an angle  $\alpha$  to the grain [N]

n<sub>ef</sub> Effective number of screws according to EN 1995-1-1

For inclined screws:  $n_{ef} = \max \{ n^{0.9}; 0.9 \cdot n \}$ 

 $k_{ax}$  Factor, taking into account the angle  $\alpha$  between screw axis and grain direction  $k_{ax}=1.0$  for  $45^{\circ} \leq \alpha < 90^{\circ}$ 

$$k_{ax} = 0.3 + \frac{0.7 \cdot \alpha}{45} \ \text{ for } 0^{\circ} \leq \alpha < 45^{\circ}$$

 $f_{ax,k}$  Characteristic withdrawal parameter [N/mm<sup>2</sup>] for timber members

for Egger Eurostrand OSB 4 TOP with minimum thickness t = 12 mm: screw 5,0 mm  $\leq d \leq 10,0$  mm:

 $f_{ax,k} = 10,0 \text{ N/mm}^2$ 

d Outer thread diameter [mm]

 $\ell_{\rm ef}$  Point side penetration length of the threaded part according to EN 1995-1-1:2008 [mm]

α Angle between grain and screw axis [°]

 $\rho_k$  Characteristic density [kg/m³], for hardwoods the assumed characteristic density shall not exceed 730 kg/m³

For screws arranged under an angle between screw axis and grain direction of less than 90°, the minimum threaded penetration length is:

 $\ell_{\rm ef} \ge \min (4 \cdot d/\sin \alpha ; 20 \cdot d)$ 

For screws penetrating more than one layer of cross laminated timber, the different layers may be taken into account proportionally.

The axial withdrawal capacity is limited by the head pullthrough capacity and the tensile strength of the screw.

For axially loaded screws in tension, where the external force is parallel to the screw axes, the rules in EN 1995-1-1, 8.7.2 (8) should be applied.

For inclined screws in timber-to-timber or steel-to-timber shear connections, where the screws are arranged under an angle  $30^{\circ} \le \alpha \le 60^{\circ}$  between the shear plane and the screw axis, the effective number of screws  $n_{ef}$  should be determined as follows:

For one row of n screws parallel to the load, the load-carrying capacity should be calculated using the effective number of fasteners nef, where

$$n_{ef} = max \{n^{0.9}; 0.9 \cdot n\}$$

and n is the number of inclined screws in a row. If crossed pairs of screws are used in timber-to-timber connections, n is the number of crossed pairs of screws in a row.

Note: For inclined screws as fasteners in mechanically

jointed beams or columns or for the fixing of thermal insulation material,  $n_{ef} = n$ .

# Head pull-through capacity

The characteristic head pull-through capacity of "fischer Power-Fast" and "fischer construction screws" shall be calculated according to EN 1995-1-1:2008 from:

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{head,k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
 [N]

where:

 $F_{ax,\alpha,Rk}$  characteristic head pull-through capacity of the connection at an angle  $\alpha \ge 30^{\circ}$  to the grain [N]

n<sub>ef</sub> effective number of screws according to EN 1995-1-1

For inclined screws:  $n_{ef} = max \{ n^{0.9} ; 0.9 \cdot n \}$ 

(see axial withdrawal capacity)

 $f_{head,k}$  characteristic head pull-through parameter  $\lceil N/mm^2 \rceil$ 

d<sub>h</sub> diameter of the screw head [mm]

 $\rho_k$  characteristic density [kg/m<sup>3</sup>], for wood-

based panels  $\rho_k = 380 \text{ kg/m}^3$ 

Characteristic head pull-through parameter for screws with head diameter  $\leq 21$  mm in connections with timber and with wood-based panels with thicknesses above 20 mm:  $f_{head,k} = 12 \text{ N/mm}^2$ 

Characteristic head pull-through parameter for screws with head diameter 21 mm  $< d_h \le 35$  mm in connections with timber and with wood-based panels with thicknesses above 20 mm:

 $f_{head,k} = 10 \text{ N/mm}^2$ 

Characteristic head pull-through parameter for screws in connections with wood-based panels with thicknesses between 12 mm and 20 mm:

 $f_{head,k} = 8 \text{ N/mm}^2$ 

Screws in connections with wood-based panels with a thickness below 12 mm (minimum thickness of the wood based panels of 1,2·d with d as outer thread diameter):

 $f_{head.k} = 8 \text{ N/mm}^2$ 

limited to  $F_{ax,\alpha,Rk} = 400 \text{ N}$ 

The head diameter  $d_h$  shall be greater than  $1.8 \cdot d_s$ , where  $d_s$  is the smooth shank or the wire diameter. Otherwise the characteristic head pull-through capacity  $F_{ax,\alpha,Rk} = 0$ .

Outer diameter of washers  $d_h > 35$  mm shall not be considered.

The minimum thickness of wood-based panels according to the clause 3.9 must be observed.

In steel-to-timber connections the head pull-through capacity is not decisive.

#### **Tensile capacity**

The characteristic tensile strength ftens,k of "fischer Power-Fast" and "fischer construction screws" is:

#### Screws from carbon steel:

Screw d = 3.0 mm: 2,7 kNScrew d = 3.5 mm: 3,7 kNScrew d = 4.0 mm: 4,3 kN Screw d = 4.5 mm: 5,5 kN Screw d = 5.0 mm: 6,8 kN Screw d = 6.0 mm:  $10.7 \,\mathrm{kN}$ Screw d = 8.0 mm: 19,1 kN Screw d = 10.0 mm: 29,8 kN Screw d = 12,0 mm: 32,7 kN

#### Screws from stainless steel:

Screw d = 3.0 mm: 1,6 kN 2,1 kN Screw d = 3.5 mm: Screw d = 4.0 mm: 2,8 kN Screw d = 4.5 mm: 3.5 kN Screw d = 5.0 mm: 4,3 kN Screw d = 6.0 mm: 6,2 kNScrew d = 8.0 mm: 13,0 kN

For screws used in combination with steel plates, the tearoff capacity of the screw head should be greater than the tensile strength of the screw.

# **Compressive capacity**

The characteristic compressive capacity  $F_{ax,Rk}$  of fischer Power-Fast screws with the head fixed between two aluminium-, carbon steel- or stainless steel plates according to Annex D and the thread driven completely into timber perpendicular to the grain shall be calculated from:

$$F_{ax,Rk} = min \left\{ f_{ax,k} \cdot d \cdot \ell_{ef} \cdot \left( \frac{\rho_k}{350} \right)^{0.8} ; \kappa_c \cdot N_{pl,k} \right\} [N]$$

Where

$$\kappa_{c} = \begin{cases} 1 & \text{for } \overline{\lambda}_{k} \leq 0, 2\\ \frac{1}{k + \sqrt{k^{2} - \overline{\lambda}_{k}^{2}}} & \text{for } \overline{\lambda}_{k} > 0, 2 \end{cases}$$

$$k = 0.5 \cdot \left\lceil 1 + 0.49 \cdot (\overline{\lambda}_k - 0.2) + \overline{\lambda}_k^2 \right\rceil$$

The relative slenderness ratio shall be calculated from:

$$\overline{\lambda}_{k} = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}}$$

$$N_{pl,k} = \pi \cdot \frac{d_s^2}{4} \cdot f_{y,k}$$

is the characteristic value for the axial capacity in case of plastic analysis referred to the smooth shank cross-section.

$$N_{ki,k} = \frac{\pi^2 \cdot EI_S}{\ell_{ef}^2}$$
 [N]

is the characteristic ideal elastic buckling load.

Characteristic yield strength for screws made of carbon steel:

$$f_{v,k} = 1000$$
 [N/mm<sup>2</sup>]

Characteristic yield strength for screws made of stainless steel:

$$f_{y,k} = 500 \qquad [N/mm^2]$$

Modulus of elasticity for screws made of carbon steel:

=210000 $E_{\rm s}$  $[N/mm^2]$ 

Modulus of elasticity for screws made of stainless steel:  

$$E_s = 160000$$
 [N/mm<sup>2</sup>]

Second moment of area:

$$\begin{split} I_S = & \frac{\pi}{64} \cdot d_s^4 \\ d_s = & \text{smooth shank diameter} \\ \ell_{ef} = & 0,7 \cdot \ell \quad \text{buckling length} \end{split} \qquad \begin{bmatrix} mm^4 \\ [mm] \end{bmatrix}$$

 $\ell$  = free screw length protruding from the timber

member including the screw head Note: When determining design values of the compressive capacity it should be considered that  $f_{ax,d}$  is to be calculated using  $k_{mod}$  and  $\gamma_M$  for timber according to EN 1995 while  $N_{pl,d}$  is calculated using  $\gamma_{M,1}$  for steel buckling according to EN 1993.

[mm]

## Combined laterally and axially loaded screws

For screwed connections subjected to a combination of axial load and lateral load, the following expression should be satisfied:

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{la,Ed}}{F_{la,Rd}}\right)^2 \leq 1$$

where

 $F_{ax,Ed}$ axial design load of the screw  $F_{\text{la.Ed}}$ lateral design load of the screw

 $F_{ax.Rd}$ design load-carrying capacity of an axially

loaded screw

design load-carrying capacity of a laterally  $F_{la,Rd}$ 

loaded screw

#### Slip modulus

The axial slip modulus  $K_{ser}$  of a screw for the serviceability limit state should be taken independent of angle  $\alpha$  to the grain as:

$$C = K_{ser} = 780 \cdot d^{0.2} \cdot \ell_{ef}^{0.4}$$
 [N/mm]

Where

outer thread diameter [mm] d

penetration length in the structural member [mm]  $\ell_{\mathrm{ef}}$ 

#### Thermal insulation material on top of rafters

"fischer Power-Fast" screws with an outer thread diameter of d = 6 mm, 8 mm, 10 mm and 12 mm may be used for the fixing of thermal insulation material on top of rafters.

The thickness of the insulation ranges up to 400 mm. The rafter insulation must be placed on top of solid timber or glued laminated timber rafters or cross-laminated timber members and be fixed by battens placed parallel to the rafters or by wood-based panels on top of the insulation layer. The insulation of vertical facades is also covered by the rules given here.

Screws must be screwed in the rafter through the battens or panels and the insulation without pre-drilling in one sequence.

The angle  $\alpha$  between the screw axis and the grain direction of the rafter should be between 30° and 90°.

The battens must be from solid timber (softwood) according to EN 338:2003-04. The minimum thickness of the battens is 80 mm and the minimum width 100 mm for screws with outer thread diameter d=12 mm. The minimum thickness of the battens is 40 mm and the minimum width 60 mm for screws with outer thread diameter d=10 mm. For screws with outer thread diameter d=6 mm and 8 mm the minimum thickness of the battens is 30 mm and the minimum width 50 mm.

Alternatively, to the battens, boards with a minimum thickness of 20 mm from plywood according to EN 636, particle board according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or ETA and solid wood panels according to EN 13353 may be used.

The rafter consists of solid timber (softwood) according to EN 338, glued laminated timber according to EN 14081, cross-laminated timber, laminated veneer lumber according to EN 14374 or to ETA or similar glued members according to ETA and has a minimum width of 60 mm.

The insulation must comply with a ETA.

The insulation must have a minimum compressive stress of  $\sigma_{10\%} = 0.05 \text{ N/mm}^2$  at 10 % deformation according to EN 826:1996-05.

The analysis of the fixing of the insulation and battens or boards, respectively, may be carried out using the static model in Annex B. The battens or boards, respectively, must have sufficient strength and stiffness. The maximum pressure between the battens or boards, respectively, and the insulation shall not exceed  $1,1\cdot\sigma_{10\%}$ .

The characteristic axial withdrawal capacity of the screws for rafter or facade insulation shall be calculated from:

$$F_{ax,\alpha,Rk} = min \begin{cases} k_{ax} \cdot f_{ax,k} \cdot d \cdot \ell_{ef} \cdot k_{1} \cdot k_{2} \left(\frac{\rho_{k}}{350}\right)^{0.8} \\ f_{head,k} \cdot d_{h}^{2} \cdot \left(\frac{\rho_{k}}{350}\right)^{0.8} \end{cases}$$

$$[N]$$

where

 $F_{ax,\alpha,RK}$  Characteristic withdrawal capacity of the connection at an angle  $\alpha$  to the grain [N]

 $k_{ax}$  Factor, taking into account the angle  $\alpha$  between screw axis and grain direction

 $k_{ax} = 1.0$  for  $45^{\circ} \le \alpha < 90^{\circ}$ 

 $k_{ax}=~0,3+\frac{0,7\cdot\alpha}{45}~~for~0^{\circ}\leq\alpha<45^{\circ}$ 

 $f_{ax,k}$  Characteristic withdrawal parameter  $\lceil N/mm^2 \rceil$ 

D Outer thread diameter [mm]

Point side penetration length of the threaded part according to EN 1995-1-1:2008 [mm]

 $\alpha$  Angle between grain and screw axis ( $\alpha \ge 30^{\circ}$ )

 $k_1 \quad \min\{1; 220/t_{HI}\}$ 

 $k_2 \qquad \min \{1; \sigma_{10\%}/0,12\}$ 

t<sub>HI</sub> Thickness of the thermal insulation [mm]

 $\sigma_{10\%}$  Compressive stress of the thermal insulation

under 10 % deformation [N/mm<sup>2</sup>]

 $\sigma_{10\%} \ge 0.05 \text{ N/mm}^2$ 

 $f_{head,k}$  Characteristic head pull-through parameter

 $[N/mm^2]$ 

d<sub>h</sub> Outer diameter of the screw head [mm]

ρ<sub>k</sub> Characteristic density [kg/m³]

 $f_{\text{tens,d}} \qquad \text{Characteristic tensile capacity of the screw}$ 

[N]

Friction forces shall not be considered for the design of the characteristic axial withdrawal capacity of the screws.

The anchorage of wind suction forces as well as the bending stresses of the battens or the boards, respectively, shall be considered in design. Additional screws perpendicular to the grain of the rafter (angle  $\alpha = 90^{\circ}$ ) may be arranged if necessary.

Screws for the anchorage of rafter insulation shall be arranged according to Annex B.

The maximum screw spacing is  $e_S = 1,75$  m.

# 3.10 Aspects related to the performance of the product

3.10.1 Corrosion protection in service class 1, 2 and 3. The fischer Power-Fast and fischer construction screws are produced from carbon wire. Screws made from carbon steel

are electrogalvanised and yellow or blue chromate. The mean thickness of the zinc coating is 5µm.

The material specification of the stainless steel screws is deposited with ETA-Danmark.

# 3.11 General aspects related to the intended use of the product

The screws are manufactured in accordance with the provisions of the European Technical Assessment using the automated manufacturing process and laid down in the technical documentation.

The installation shall be carried out in accordance with Eurocode 5 or an appropriate national code unless otherwise is defined in the following. Instructions from fischerwerke GmbH & Co. KG should be considered for installation.

The screws are used for connections in load bearing timber structures between members of solid timber (softwood and hardwood), glued laminated timber (softwood and hardwood), cross-laminated timber (minimum diameter d = 6,0 mm, softwood and hardwood), laminated veneer lumber (softwood and hardwood), similar glued members (softwood and hardwood), wood-based panels or steel members.

The screws may be used for connections in load bearing timber structures with structural members according to an associated ETA, if according to the ETA of the structural member a connection in load bearing timber structures with screws according to an ETA is allowed.

Furthermore, the screws with diameters between 6 mm and 12 mm may also be used for the fixing of insulation on top of rafters or at vertical facades.

A minimum of two screws should be used for connections in load bearing timber structures. A single screw may be used in structural connections if the penetration length of the screw including an unthreaded part of the shank is at least  $20 \cdot d$  and the screw is only axially loaded. The load-bearing capacity of the single screw in this case shall be reduced by 50 %.

A single screw per connection may also be used, if the member is fixed with at least two screws and the screws are used for the fixing of boards, battens and wind braces, or for the fixing of rafters, purlins or similar on main beams or top plates.

The minimum penetration depth in structural members made of solid, glued or cross-laminated timber is 4·d.

Wood-based panels - except Egger Eurostrand OSB 4 TOP - and steel plates should only be arranged on the side of the

screw head. The minimum thickness of wood-based panels should be 1,2·d. Furthermore, the minimum thickness for following wood-based panels should be:

- Plywood, Fibreboards: 6 mm
- Particleboards, OSB, Cement Particleboards: 8 mm
- Solid wood panels: 12 mm

For structural members according to ETA's the terms of the ETA's must be considered.

If screws with an outer thread diameter  $d \ge 8$  mm are used in load bearing timber structures, the structural solid or glued laminated timber, laminated veneer lumber and similar glued members must be from spruce, pine or fir. This does not apply for screws in pre-drilled holes.

The minimum angle between the screw axis and the grain direction is  $\alpha = 0^{\circ}$ .

The screws shall be driven into softwood without predrilling or after pre-drilling. The screws shall be driven into hardwood with a maximum characteristic density of 730 kg/m³ after predrilling.

The drill hole diameters are:

| Outer thread | Drill hole | diameter |
|--------------|------------|----------|
| diameter     | Softwood   | Hardwood |
| 4,0          | 2,5        | 3,0      |
| 4,5          | 2,5        | 3,0      |
| 5,0          | 3,0        | 3,0      |
| 6,0          | 4,0        | 4,0      |
| 8,0          | 5,0        | 6,0      |
| 10,0         | 6,0        | 7,0      |
| 12,0         | 7,0        | 8,0      |

The hole diameter in steel members must be predrilled with a suitable diameter.

Only the equipment prescribed by fischerwerke GmbH & Co. KG shall be used for driving the screws.

In connections with screws with countersunk head according to Annexes A1, A5, A6, A7, A11, A13 and A18, the head must be flush with the surface of the connected structural member. A deeper countersink is not allowed.

Screws from carbon steel and stainless steel with countersunk head according to Annex A1, A2, A5, A6, A7, A11, A13, A14 and A18 may be used together with washers according to Annex A20. Washers according to EN ISO 7094 may be used together with washers according to Annex A20.

Screws according to Annex A3, A4, A8, A9, A10, A12 A16, A17 and A19 may be used together with washers according to EN ISO 7094.

#### Page 12 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 12 / 41

Washers from carbon steel should be used with screws from carbon steel and screws from stainless steel with washers from stainless steel. Washers should have a full bearing area.

For structural timber members, minimum spacing and distances for screws in predrilled holes are given in EN 1995-1-1:2008 (Eurocode 5) clause 8.3.1.2 and table 8.2 as for nails in predrilled holes. Here, the outer thread diameter d must be considered.

For screws in non-predrilled holes, minimum spacing and distances are given in EN 1995-1-1:2008 (Eurocode 5) clause 8.3.1.2 and table 8.2 as for nails in non-predrilled holes.

Alternatively, minimum distances and spacing for exclusively axially loaded "fischer Power-Fast" screws in non-predrilled holes in members of solid timber (softwood and hardwood), glued laminated timber or similar glued products (softwood and hardwood) with a minimum thickness  $t=12\cdot d$  and a minimum width of  $8\cdot d$  or 60 mm, whichever is the greater, may be taken as:

| Spacing a <sub>1</sub> parallel to the grain               | $a_1 = 5 \cdot d$     |
|------------------------------------------------------------|-----------------------|
| Spacing a <sub>2</sub> perpendicular to the grain          | $a_2 = 5 \cdot d$     |
| Distance a <sub>3,c</sub> from centre of the screw-part in |                       |
| timber to the end grain                                    | $a_{3,c} = 9 \cdot d$ |
| Distance a <sub>4,c</sub> from centre of the screw-part in |                       |
| timber to the edge                                         | $a_{4,c} = 4 \cdot d$ |

Spacing  $a_2$  perpendicular to the grain may be reduced from 5·d to 2,5·d, if the condition  $a_1 \cdot a_2 \ge 25 \cdot d^2$  is fulfilled.

For Douglas fir members minimum spacing and distances parallel to the grain shall be increased by 50%.

Minimum distances from loaded or unloaded ends must be  $15 \cdot d$  for screws in non-predrilled holes with outer thread diameter  $d \ge 8$  mm and timber thickness  $t < 5 \cdot d$ .

Minimum distances from the unloaded edge perpendicular to the grain may be reduced to  $3 \cdot d$  also for timber thickness  $t < 5 \cdot d$ , if the spacing parallel to the grain and the end distance is at least  $25 \cdot d$ .

Unless specified otherwise in the technical specification (ETA or hEN) of cross laminated timber, minimum distances and spacing for screws in the plane surface of cross laminated timber members with a minimum thickness  $t = 10 \cdot d$  may be taken as (see Annex C):

| Spacing a <sub>1</sub> parallel to the grain               | $a_1 = 4 \cdot d$     |
|------------------------------------------------------------|-----------------------|
| Spacing a <sub>2</sub> perpendicular to the grain          | $a_2 = 2.5 \cdot d$   |
| Distance a <sub>3,c</sub> from centre of the screw-part in |                       |
| timber to the unloaded end grain of                        |                       |
| the plane surface                                          | $a_{3,c} = 6 \cdot d$ |
| Distance a <sub>3,t</sub> from centre of the screw-part in |                       |
| timber to the loaded end grain                             |                       |

| of the plane surface                                       | $a_{3,t} = 6 \cdot d$ |
|------------------------------------------------------------|-----------------------|
| Distance a <sub>4,c</sub> from centre of the screw-part in |                       |
| timber to the unloaded edge                                | $a_{4,c}=2,5\cdot d$  |
| Distance a <sub>4,t</sub> from centre of the screw-part in |                       |
| timber to the loaded edge                                  | $a_{4,t} = 6 \cdot d$ |

Unless specified otherwise in the technical specification (ETA or hEN) of cross laminated timber, minimum distances and spacing for screws in the edge surface of cross laminated timber members with a minimum thickness  $t = 10 \cdot d$  and a minimum penetration depth perpendicular to the edge surface of 10·d may be taken as (see Annex C): Spacing a<sub>1</sub> parallel to the CLT plane surface  $a_1 = 10 \cdot d$ Spacing a<sub>2</sub> perpendicular to the CLT plane surface  $a_2 = 4 \cdot d$ Distance a<sub>3,c</sub> from centre of the screw-part in timber to the unloaded end  $a_{3,c} = 7 \cdot d$ Distance a<sub>3,t</sub> from centre of the screw-part in timber to the loaded end  $a_{3,t} = 12 \cdot d$ Distance a<sub>4,c</sub> from centre of the screw-part in timber to the unloaded edge  $a_{4,c} = 3 \cdot d$ Distance a<sub>4,t</sub> from centre of the screw-part in timber to the loaded edge  $a_{4,t} = 6 \cdot d$ 

For a crossed screw couple the minimum spacing between the crossing screws is 1,5·d.

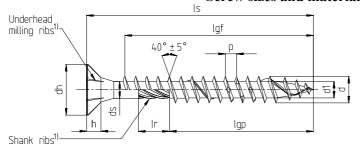
Minimum thickness for structural members is t=24 mm for screws with outer thread diameter d < 8 mm, t=30 mm for screws with outer thread diameter d=8 mm, t=40 mm for screws with outer thread diameter d=10 mm and t=80 mm for screws with outer thread diameter d=12 mm.

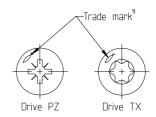
# 4 Attestation and verification of constancy of performance (AVCP)

# 4.1 AVCP system

According to the decision 97/176/EC of the European Commission1, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 3.

# 5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking


Issued in Copenhagen on 2019-01-02 by

Thomas Bruun
Managing Director, ETA-Danmark

# Appendix 14 / 41

# Screw sizes and material

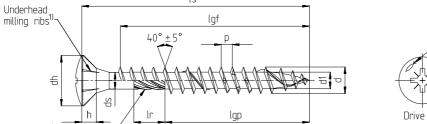


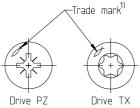


1) optional

Power-Fast self-drilling screw - Countersunk head with full- or partial thread

| <ul> <li>Carbo</li> </ul>                             | n Steel<br>ole surface tro |                | •                 | •                                                                                      |                   |          |                   |          |                   |          |                   | •         |                   |              | brass                                            | nlated   |
|-------------------------------------------------------|----------------------------|----------------|-------------------|----------------------------------------------------------------------------------------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|-----------|-------------------|--------------|--------------------------------------------------|----------|
| Nominal diameter                                      |                            |                | 3,0 3,5           |                                                                                        |                   | 4,0 4,5  |                   | 5,0      |                   | 6,0      |                   | Orass I   | Juica             |              |                                                  |          |
|                                                       | Outer diame                |                |                   | 00                                                                                     |                   | 50       | 4,0               | 00       |                   | 50       |                   | 5,00 6,00 |                   |              |                                                  |          |
| _                                                     | Allow. devi                |                |                   |                                                                                        | , ,               |          |                   | ±0       | ,                 |          | ,                 |           |                   |              |                                                  |          |
|                                                       | Core diamet                |                | 2,                | 00                                                                                     | 2,                | 20       | 2,:               | 50       | 2,                | 70       | 3,                | 00        | 4,                | 00           |                                                  |          |
| $d_1$                                                 | Allow. devi                | ation          |                   |                                                                                        |                   | -0,25 /  | +0,10             |          |                   |          |                   | ±0        | ,20               |              |                                                  |          |
| , I                                                   | Head diame                 | ter            | 6,                | 00                                                                                     | 7,                | 00       | 8,0               | 00       | 9,                | 00       | 10.               | ,00       | 12.               | ,00          |                                                  |          |
| $d_h$                                                 | Allow. devi                | ation          |                   |                                                                                        |                   |          |                   | -0,50 /  | +0,10             |          |                   |           |                   |              |                                                  |          |
| 4 5                                                   | Shank diam                 | eter           | 2,                | 25                                                                                     | 2,                | 60       | 2,9               | 90       | 3,                | 25       | 3,                | 60        | 4,                | 20           |                                                  |          |
| $d_s$                                                 | Allow. devi                | ation          |                   |                                                                                        |                   |          |                   | -0,30 /  | +0,10             |          |                   |           |                   |              |                                                  |          |
| h I                                                   | Head height                |                |                   | 90                                                                                     |                   | 10       | 2,:               |          | 2,                | 70       | 3,                | 00        |                   | 80           |                                                  |          |
|                                                       | Thread pitch               |                | 1,:               | 50                                                                                     | 1,                | 80       | 2,0               | 00       | 2,                | 20       | 2,                | 50        | 3,00-             | -4,50        |                                                  |          |
| p A                                                   | Allow. devi                | ation          |                   |                                                                                        |                   |          |                   |          | 0%                |          |                   |           |                   |              |                                                  |          |
| $l_r^{(1)}$                                           | Shank ribs l               | ength          | 3,                | 75                                                                                     | 4,                | 25       | 4,                | 75       | 5,                | 50       | 6,                | 00        | 7,                | 00           |                                                  |          |
| I <sub>r</sub> ′                                      | Allow. devi                | ation          |                   |                                                                                        | ±0                | ,75      |                   |          |                   |          | ±1,               | ,00       |                   |              |                                                  |          |
|                                                       | Drive TX                   |                |                   | 1                                                                                      | 0                 |          | 20                |          |                   |          | 20                | 25        | 3                 | 0            |                                                  |          |
|                                                       | Drive PZ                   |                | ]                 | 1 2 3                                                                                  |                   |          |                   |          |                   |          |                   |           |                   |              |                                                  |          |
| S                                                     | crew length                | $l_{\rm s}$    | S                 | Standard thread length   $l_{gf}$ = Full thread   $l_{gp}$ =Partial thread   Tolerance |                   |          |                   |          |                   |          |                   |           |                   | $: \pm 2,0$  | 2)                                               |          |
| Nominal                                               | min                        | max            | $l_{\mathrm{gf}}$ | $l_{gp}$                                                                               | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$  | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |                                                  |          |
| length                                                |                            |                | Ŭ                 | 1gp                                                                                    | - C               | 1gp      | Ŭ                 | -gp      | Ŭ                 | -gp      | 1gi               | *gp       | -gı               | -gp          | <u> </u>                                         |          |
| 20                                                    | 18,95                      | 21,05          | 16                |                                                                                        | 16                |          | 16                |          | 16                |          |                   |           |                   |              | <u> </u>                                         |          |
| 25                                                    | 23,75                      | 26,25          | 21                |                                                                                        | 21                | 18       | 20                | 18       | 20                |          |                   |           |                   |              | <u> </u>                                         | -        |
| 30                                                    | 28,75                      | 31,25          | 26                | 18                                                                                     | 26                | 18       | 25                | 18       | 25                | 18       | 24                |           | •                 |              | <u> </u>                                         |          |
| 35                                                    | 33,50                      | 36,50          | 31                | 24                                                                                     | 31                | 24       | 30                | 24       | 30                | 24       | 29                | 24        | 28                | 2.4          |                                                  |          |
| 40                                                    | 38,50                      | 41,50          | 36                | 24                                                                                     | 36                | 24       | 35                | 24       | 35                | 24       | 34                | 24        | 33                | 24           | <u> </u>                                         |          |
| 45<br>50                                              | 43,50                      | 46,50          | 41                | 30                                                                                     | 41                | 30       | 40                | 30       | 40                | 30       | 39<br>44          | 30        | 38<br>43          | 30           | <del>                                     </del> |          |
| 55                                                    | 48,50                      | 51,50          |                   |                                                                                        | 46                | 30       | 45<br>50          | 36       | 50                | 36       | 44                | 36        | 43                | 30           | <u> </u>                                         | $\vdash$ |
| 60                                                    | 53,50<br>58,50             | 56,50<br>61,50 |                   |                                                                                        |                   |          | 30                | 36       | 30                | 36       | 49                | 36        | 53                | 36           | <del>                                     </del> |          |
| 70                                                    | 68,50                      | 71,50          |                   |                                                                                        |                   |          |                   | 42       |                   | 42       |                   | 42        | 63                | 42           |                                                  |          |
| 80                                                    | 78,50                      | 81,50          |                   |                                                                                        |                   |          |                   | 50       |                   | 50       |                   | 50        | 73                | 50           |                                                  | <b>†</b> |
| 90                                                    | 88,25                      | 91,75          |                   |                                                                                        |                   |          |                   | 50       |                   | 50       |                   | 60        | 13                | 60           |                                                  |          |
| 100                                                   | 98,25                      | 101,75         |                   |                                                                                        |                   |          |                   |          |                   |          |                   | 60        |                   | 60           |                                                  | <b>+</b> |
| 110                                                   | 108,25                     | 111,75         |                   |                                                                                        |                   |          |                   |          |                   |          |                   | 70        |                   | 70           |                                                  |          |
| 120                                                   | 118,25                     | 121,75         |                   |                                                                                        |                   |          |                   |          |                   |          |                   | 70        |                   | 70           |                                                  |          |
|                                                       | steps of 10r               |                |                   |                                                                                        |                   |          |                   |          |                   |          |                   | , 0       |                   | , 0          |                                                  |          |
|                                                       | 1 <sub>s</sub> -2,00       |                |                   |                                                                                        |                   |          |                   |          |                   |          |                   |           |                   | 70           |                                                  |          |
| 130-300   I <sub>S</sub> -2,00   I <sub>S</sub> +2,00 |                            |                |                   |                                                                                        |                   |          |                   |          |                   |          |                   |           |                   |              | zec in n                                         |          |


All sizes in mm


- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq 30mm \triangleq \pm 1,\! 7mm \end{array}$ 

| fischer Power-Fast and Construction Screws | Annex A1 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

Page 15 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 15 / 41

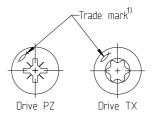




Shank ribs<sup>1).</sup>

Power-Fast self-drilling screw - Raised countersunk head with full- or partial thread


|                | Power-Fast self-drilling screw - Raised countersunk head with full- or partial thread  Carbon steel |              |                  |                   |                                                                                             |                   |          |                   |              |                   |                   |                   |              |                   | ad       |           |           |
|----------------|-----------------------------------------------------------------------------------------------------|--------------|------------------|-------------------|---------------------------------------------------------------------------------------------|-------------------|----------|-------------------|--------------|-------------------|-------------------|-------------------|--------------|-------------------|----------|-----------|-----------|
| ■ Po           | ssibl                                                                                               | e surface ti | eatments: y      | yellow (          | or blue                                                                                     | -zinc-p           | lated, b | lue zinc          | -plated      | l≥12µr            | n, bonu           | s- zince          | ed, buri     | nished,           | nickel-  | /brass p  | plated    |
| N              | Nominal diameter                                                                                    |              |                  | 3,                | ,0                                                                                          | 3                 | ,5       | 4,                | ,0           | 4,                | ,5                | 5,                | ,0           | 6,                | ,0       |           |           |
| 1              | O                                                                                                   | uter diame   | eter             | 3,                | 00                                                                                          | 3,                | 50       | 4,                | 00           | 4,                | 50                | 5,                | 00           | 6,                | 00       |           |           |
| d              | A                                                                                                   | llow. devi   | ation            |                   |                                                                                             |                   |          |                   | ±0           | ,30               |                   |                   |              |                   |          |           |           |
| $d_1$          | C                                                                                                   | ore diame    | ter              | 2,                | 00                                                                                          | 2,                | 20       | 2,                | 50           | 2,                | 70                | 3,                | 00           | 4,                | 00       |           |           |
| uı             |                                                                                                     | llow. devi   |                  |                   |                                                                                             |                   | -0,25    | '+0,10            |              |                   |                   |                   | ±0           | ,20               |          |           |           |
| $d_h$          |                                                                                                     | ead diame    |                  | 6,                | 00                                                                                          | 7,                | 00       | ,                 | 00           | 9,                |                   | 10                | ,00          | 12,               | ,00      |           |           |
| u <sub>h</sub> |                                                                                                     | llow. devi   |                  |                   |                                                                                             |                   |          |                   |              | '+0,10            |                   |                   |              |                   |          |           |           |
| $d_{s}$        |                                                                                                     | nank diam    |                  | 2,                | 25                                                                                          | 2,                | 60       | 2,                |              | ,                 | 25                | 3,                | 60           | 4,                | 20       |           |           |
|                |                                                                                                     | llow. devi   |                  |                   |                                                                                             |                   |          |                   |              | +0,10             |                   |                   |              |                   |          |           |           |
| h              |                                                                                                     | ead height   |                  |                   | 90                                                                                          |                   | 10       | 2,                |              | ,                 | 70                | ,                 | 00           |                   | 40       |           |           |
| р              |                                                                                                     | nread pitcl  |                  | 1,                | 50                                                                                          | 1,                | 80       | 2,                | 00           |                   | 20                | 2,                | 50           | 3,00-             | -4,50    |           |           |
| 1              |                                                                                                     | llow. devi   |                  |                   |                                                                                             |                   |          | ±10%              |              |                   |                   |                   |              |                   |          |           |           |
| $l_{r}^{1)}$   |                                                                                                     | nank ribs l  |                  | 3,                | 3,75 4,25                                                                                   |                   |          | 4,75 5,50         |              |                   | - ,               | 00                | 7,00         |                   |          |           |           |
| •              |                                                                                                     | llow. devi   |                  | ±0,75             |                                                                                             |                   | 20       |                   |              | ±1,00             |                   | 20                |              |                   |          |           |           |
|                |                                                                                                     | Drive TX     |                  | 10                |                                                                                             |                   | 20       |                   |              |                   | 20   25   30      |                   |              |                   |          |           |           |
|                |                                                                                                     | Drive PZ     | 1                |                   | 1 2 3 Standard thread length $  l_{gf} = Full thread   l_{gp} = Partial thread   Tolerance$ |                   |          |                   |              |                   |                   |                   |              |                   | 2)       |           |           |
|                |                                                                                                     | ew length    | l I <sub>s</sub> | 5                 | standai                                                                                     | rd thre           | ad leng  | $gth \mid l_{gf}$ | = Full       | threac            | $I \mid I_{gp} =$ | Partial           | thread       | d   Tole          | erance   | $\pm 2,0$ | <i>2)</i> |
| Nomi<br>leng   |                                                                                                     | min          | max              | $l_{\mathrm{gf}}$ | $l_{gp}$                                                                                    | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$          | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |           |           |
| 20             |                                                                                                     | 18,95        | 21,05            | 16                |                                                                                             | 16                |          | 16                |              | 16                |                   |                   |              |                   |          |           |           |
| 25             |                                                                                                     | 23,75        | 26,25            | 21                |                                                                                             | 21                | 18       | 20                | 18           | 20                |                   |                   |              |                   |          |           |           |
| 30             |                                                                                                     | 28,75        | 31,25            | 26                | 18                                                                                          | 26                | 18       | 25                | 18           | 25                | 18                | 24                |              |                   |          |           |           |
| 35             |                                                                                                     | 33,50        | 36,50            | 31                | 24                                                                                          | 31                | 24       | 30                | 24           | 30                | 24                | 29                | 24           | 28                |          |           |           |
| 40             |                                                                                                     | 38,50        | 41,50            | 36                | 24                                                                                          | 36                | 24       | 35                | 24           | 35                | 24                | 34                | 24           | 33                | 24       |           |           |
| 45             |                                                                                                     | 43,50        | 46,50            | 41                | 30                                                                                          | 41                | 30       | 40                | 30           | 40                | 30                | 39                | 30           | 38                | 30       |           |           |
| 50             |                                                                                                     | 48,50        | 51,50            |                   |                                                                                             | 46                | 30       | 45                | 30           | 45                | 30                | 44                | 30           | 43                | 30       |           |           |
| 55             |                                                                                                     | 53,50        | 56,50            |                   |                                                                                             |                   |          | 50                | 36           | 50                | 36                | 49                | 36           | 48                |          |           |           |
| 60             |                                                                                                     | 58,50        | 61,50            |                   |                                                                                             |                   |          |                   | 36           |                   | 36                |                   | 36           | 53                | 36       | <u> </u>  |           |
| 70             |                                                                                                     | 68,50        | 71,50            |                   |                                                                                             |                   |          |                   | 42           |                   | 42                |                   | 42           | 63                | 42       | <u> </u>  |           |
| 80             | 80 78,50 81,50                                                                                      |              |                  |                   |                                                                                             |                   |          | 50                |              | 50                |                   | 50                | 73           | 50                |          |           |           |


- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- $\blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$

| 2) | $10\text{mm} \ge l_g \le 18\text{mm} \triangleq \pm 1,5\text{mm}$ |
|----|-------------------------------------------------------------------|
|    | $18mm \geq l_g \leq 30mm \triangleq \pm 1{,}7mm$                  |

| fischer Power-Fast and Construction Screws | Annex A2 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

Page 16 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 16 / 41



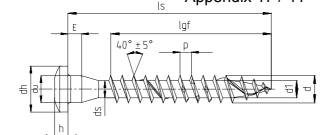


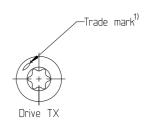
Shank ribs<sup>1).</sup>

optional

# Power-Fast self-drilling screw - Pan head with full- or partial thread

|                | Power-Fast self-drilling screw - Pan head with full- or partial thread  Carbon steel |                  |                    |               |                   |            |                                         |          |                   |           |                    |          |                   |          |          |        |
|----------------|--------------------------------------------------------------------------------------|------------------|--------------------|---------------|-------------------|------------|-----------------------------------------|----------|-------------------|-----------|--------------------|----------|-------------------|----------|----------|--------|
|                | on steel<br>ble surface t                                                            | reatments:       | yellow             | or blue       | zinc-pl           | lated, b   | lue zinc                                | -plated  | l ≥12μn           | n, bonu   | s- zince           | ed, burr | nished,           | nickel-  | /brass p | olated |
| Nom            | inal dian                                                                            | neter            | 3                  | ,0            | 3                 | ,5         | 4                                       | ,0       | 4.                | ,5        | 5,                 | ,0       | 6                 | ,0       |          |        |
|                | Outer diam                                                                           |                  | 3,                 | 00            | 3,                | 50         | 4,                                      | 00       | ,                 | 50        | 5,                 | 00       | 6,                | 00       |          |        |
| I              | Allow. devi                                                                          |                  |                    |               |                   |            |                                         |          |                   | ,30       |                    |          |                   |          |          |        |
| d              | Core diame                                                                           |                  | 2,                 | 00            |                   | 20         |                                         | 50       | 2,                | 70        | 3,                 | 00       | 4,                | 00       |          |        |
| I              | Allow. devi                                                                          |                  |                    |               |                   | -0,25      | '+0,10                                  | )        |                   |           |                    | ±0       | ,20               |          |          |        |
| d              | Head diame                                                                           |                  | 6,                 | 00            | 7,                | 00         |                                         | 00       |                   | 00        | 10                 | ,00      | 12                | ,00      |          |        |
| I              | Allow. devi                                                                          |                  |                    |               | 1                 |            |                                         |          | '+0,10            |           | 1                  |          | 1                 |          |          |        |
|                | Shank diam                                                                           |                  | 2,                 | 25            | 2,                | 60         |                                         | 90       | ,                 | 25        | 3,                 | 60       | 4,                | 20       |          |        |
|                | Allow. devi                                                                          |                  |                    | 20            |                   | <b>5</b> 0 |                                         |          | +0,10             |           |                    | 10       |                   | 0.0      |          |        |
|                | Head heigh                                                                           |                  |                    | 30            |                   | 50         |                                         | 90       |                   | 10        |                    | 40       |                   | 80       |          |        |
| 10             | Thread pite                                                                          |                  | 1,                 | 50            | 1,                | 80         | 2,                                      | 00       |                   | 20        | 2,                 | 50       | 3,00              | -4,50    |          |        |
| - I            |                                                                                      | llow. deviation  |                    |               | 255 1 425         |            |                                         |          | 0%                | 50        |                    | 00       | 7                 | 00       |          |        |
|                | Shank ribs I<br>Allow. devi                                                          |                  | 3,75 4,25<br>±0,75 |               |                   |            | 4,75 5,50                               |          |                   |           | 6,00 7,00<br>±1,00 |          |                   |          |          |        |
|                | Drive TX                                                                             |                  |                    | 1             | $\frac{\pm 0}{0}$ | ,/3        |                                         | <u> </u> | 0                 |           | 20                 | 25       | 30                |          |          |        |
|                | Drive PZ                                                                             |                  |                    | <u>1</u><br>1 | U                 |            | 20                                      |          |                   |           | 3                  |          |                   |          |          |        |
| S.             | crew length                                                                          | . 1              |                    | -             | ed thro           | ad land    | ~th   1                                 |          | _                 | 1   1   _ | Dortio             | throne   | + 2.0             | 2)       |          |        |
|                | Tew length                                                                           | 1 1 <sub>S</sub> | r.                 | lanuai        | u une             | au ienş    | gth $  l_{gf} = Full thread   l_{gp} =$ |          |                   | 1 altia   | uncac              | 1   1010 | lance             |          | _        |        |
| Nominal length | min                                                                                  | max              | $l_{\mathrm{gf}}$  | $l_{gp}$      | $l_{\mathrm{gf}}$ | $l_{gp}$   | $l_{\mathrm{gf}}$                       | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$  | $l_{\mathrm{gf}}$  | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |          |        |
| 20             | 18,95                                                                                | 21,05            | 16                 |               | 16                |            | 16                                      |          | 16                |           |                    |          |                   |          |          |        |
| 25             | 23,75                                                                                | 26,25            | 21                 |               | 21                | 18         | 20                                      | 18       | 20                |           |                    |          |                   |          |          |        |
| 30             | 28,75                                                                                | 31,25            | 26                 | 18            | 26                | 18         | 25                                      | 18       | 25                | 18        | 24                 |          |                   |          |          |        |
| 35             | 33,50                                                                                | 36,50            | 31                 | 24            | 31                | 24         | 30                                      | 24       | 30                | 24        | 29                 | 24       | 28                |          |          |        |
| 40             | 38,50                                                                                | 41,50            |                    | 24            | 36                | 24         | 35                                      | 24       | 35                | 24        | 34                 | 24       | 33                | 24       |          |        |
| 45             | 43,50                                                                                | 46,50            |                    | 30            |                   | 30         | 40                                      | 30       | 40                | 30        | 39                 | 30       | 38                | 30       |          |        |
| 50             | 48,50                                                                                | 51,50            |                    |               |                   | 30         | 45                                      | 30       | 45                | 30        | 44                 | 36       | 43                | 30       |          |        |
| 55             | 53,50                                                                                | 56,50            |                    |               |                   |            | 50                                      | 36       | 50                | 36        | 49                 | 36       | 48                |          |          |        |
| 60             | 58,50                                                                                | 61,50            |                    |               |                   |            |                                         | 36       |                   | 36        |                    | 42       | 53                | 36       |          |        |
| 70             | 68,50                                                                                | 71,50            |                    |               |                   |            |                                         | 42       |                   | 42        |                    | 50       | 63                | 42       |          |        |
| 80             | 78,50                                                                                | 81,50            |                    |               |                   |            |                                         | 50       |                   | 50        |                    | 50       | 73                | 50       |          |        |
| 90             | 88,25                                                                                | 91,75            |                    |               |                   |            |                                         |          |                   |           |                    | 60       |                   | 60       |          |        |
| 100            | 98,25                                                                                | 101,75           |                    |               |                   |            |                                         |          |                   |           |                    | 60       |                   | 60       |          |        |


All sizes in mm


- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \, \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq 30mm \, \triangleq \pm 1,\! 7mm \end{array}$ 

| fischer Power-East and Construction Screws | Annex A3 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

Page 17 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 17 / 41

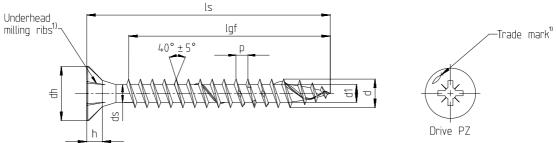




 $^{1)}$  optional

Power-Fast self-drilling screw - Wood connector screw with full thread

|                           | Powe                         | er-Fast s        | en-ar             | ınınş    | g scre  | ew - V   | <u>vooa</u>  | conn     | ectoi    | · scre            | w wi            | th Iui  | i thre | aa       |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|---------------------------|------------------------------|------------------|-------------------|----------|---------|----------|--------------|----------|----------|-------------------|-----------------|---------|--------|----------|--------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----------|--|
|                           | rbon steel<br>ssible surface | tua atua auta.   |                   | مداما سم | i       | latad I  |              | rimand 1 | ند میاما | na mlati          | .4 >12.         |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|                           |                              |                  |                   |          | zine-p  | nated, i | Jonus-2      | zincea,  | blue Zi  | пс-ртак           | 3a <u>∠1</u> 2µ | ıIII    | 1      |          | Т                                                |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| NO                        | minal dian                   |                  |                   | ,0       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| d                         | Outer dian                   |                  |                   | 00       |         |          |              |          |          |                   |                 |         |        |          | <u> </u>                                         |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|                           | Allow. dev                   |                  |                   |          |         |          |              |          |          | -0,30             |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | <u> </u> |  |
| $d_1$                     | Core diam                    |                  | 3,                | 00       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| G <sub>1</sub>            | Allow. dev                   | iation           | ±0                | ,20      |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| $d_{\mathrm{u}}$          | Underhead                    | diameter         | 5,                | 00       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| $\mathbf{u}_{\mathrm{u}}$ | Allow. dev                   | iation           | -0,               | ,35      |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| al.                       | Head diam                    | eter             | 8,                | 25       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| $d_h$                     | Allow. dev                   | iation           | ±0                | ,40      |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| E                         | Height                       |                  | 2,                | 50       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|                           | Allow. dev                   | iation           | ±0                | ,30      |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| h                         | Head height                  |                  | 2,                | 60       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|                           | Thread pite                  | ch               | 2,                | 50       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| p                         | Allow. dev                   | iation           | ±1                | 0%       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|                           | Drive TX                     | -                | 20                | 25       |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|                           | Screw lengt                  | h l <sub>s</sub> | Stan              | dard th  | read le | ength    | $l_{gf} = F$ | ull thre | ead   lo | <sub>p</sub> =Par | tial thr        | ead   T | oleran | ice: ± 2 | $2,0^{2)}$                                       |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| Nomin                     | nal                          | 400.037          |                   |          |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| lengt                     |                              | max              | $l_{\mathrm{gf}}$ | $l_{gp}$ |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 20                        | 18,95                        | 21,05            | 14                |          |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 25                        | 23,75                        | 26,25            | 19                |          |         |          |              |          |          |                   |                 |         |        |          |                                                  |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 30                        | 28,75                        | 31,25            | 24                |          |         |          |              |          |          |                   |                 |         |        |          | <u> </u>                                         | <b>├</b>                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 35                        | 33,50                        | 36,50            | 29                |          |         |          |              |          |          |                   |                 |         |        |          | <u> </u>                                         | <del>                                     </del> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 40                        | 38,50                        | 41,50            | 34                |          |         |          |              |          |          |                   |                 |         |        |          | <u> </u>                                         | +                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 45                        | 43,50                        | 46,50            | 39                |          |         |          |              |          |          |                   |                 |         |        |          | <u> </u>                                         | +                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 50                        | 48,50                        | 51,50            | 44                |          |         |          |              |          |          |                   |                 |         |        |          | <del>                                     </del> | +                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 55                        | 53,50                        | 56,50            | 49<br>54          |          |         |          |              |          |          |                   |                 |         |        |          | <del>                                     </del> | $\vdash$                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 60                        | 58,50                        | 61,50            |                   |          |         |          |              |          |          |                   |                 |         |        |          | <del>                                     </del> | $\vdash$                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 70<br>80                  | 68,50<br>78,50               | 71,50<br>81,50   | 64<br>74          |          |         | -        | -            |          |          | -                 |                 |         | -      |          | <del>                                     </del> | $\vdash$                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
| 80                        | 78,30                        | 01,30            | /4                |          |         |          |              |          |          |                   |                 |         |        | A 11 _:_ | Щ_                                               |                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |          |  |


All sizes in mm

- Intermediate lengths at l<sub>s</sub> are possible
- $\blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$

 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq \! 30mm \triangleq \pm 1,\! 7mm \end{array}$ 

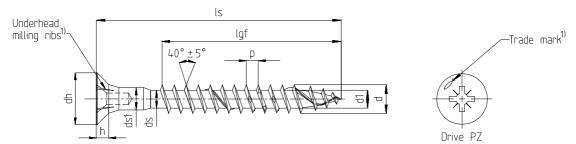
|   | tischer Power-Fast and Construction Screws | Annex A4 of European Technical Assessment |
|---|--------------------------------------------|-------------------------------------------|
| - | Sizes and Material                         | ETA-11/0027                               |

# Page 18 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 18 / 41



1) optional

Power-Fast self-drilling screw - Small countersunk head with full thread


|                 | rbon steel      | treatments:  |               | .,          |             |                   |                |                   |          |        |         |         |        |         |            |  |
|-----------------|-----------------|--------------|---------------|-------------|-------------|-------------------|----------------|-------------------|----------|--------|---------|---------|--------|---------|------------|--|
|                 | minal dian      |              | Ĭ             | ,0          | _           | ,5                |                | ,0                |          |        |         |         |        |         |            |  |
|                 | Outer diameter  |              | 3,            | 00          | 3,          | 50                | 4,             | 00                |          |        |         |         |        |         |            |  |
| d               | Allow. dev      | iation       |               |             | ±0          | ,30               |                |                   |          |        |         |         |        |         |            |  |
|                 | Core diame      | eter         | 2,            | 00          | 2,          | 20                | 2,             | 50                |          |        |         |         |        |         |            |  |
| $d_1$           | Allow. dev      | iation       |               |             | -0,25 /     | +0,10             | )              |                   |          |        |         |         |        |         |            |  |
| 1               | Head diam       | eter         | 5,            | 00          | 6,          | 00                | 7,             | 00                |          |        |         |         |        |         |            |  |
| d <sub>h</sub>  | Allow. dev      | iation       | -0,50 / +0,10 |             |             |                   |                |                   |          |        |         |         |        |         |            |  |
| h               | Head heigh      | Head height  |               | 1,90 2,10   |             | 10                | 2,             | 50                |          |        |         |         |        |         |            |  |
|                 | Thread pito     | Thread pitch |               | 50          | 1,          | 80                | 2,             | 00                |          |        |         |         |        |         |            |  |
| p               | Allow. dev      | riation      |               |             | ±10%        |                   |                |                   |          |        |         |         |        |         |            |  |
|                 | Drive PZ        |              |               | 1           |             | ,                 | 2              |                   |          |        |         |         |        |         |            |  |
|                 | Screw length ls |              | Stand         | dard th     | read le     | ength             | $l_{gf} = F_1$ | ull thre          | ead   lg | ,=Part | ial thr | ead   T | oleran | ce: ± 2 | $2,0^{2)}$ |  |
| Nomin<br>length | mın             | max          | $l_{ m gf}$   | $l_{ m gp}$ | $l_{ m gf}$ | $l_{\mathrm{gp}}$ | $l_{ m gf}$    | $l_{\mathrm{gp}}$ |          |        |         |         |        |         |            |  |
| 20              | 18,95           | 21,05        | 16            |             | 16          |                   | 16             |                   |          |        |         |         |        |         |            |  |
| 25              | 23,75           | 26,25        | 21            |             | 21          |                   | 20             |                   |          |        |         |         |        |         |            |  |
| 30              | 28,75           | 31,25        | 26            |             |             |                   |                |                   |          |        |         |         |        |         |            |  |

- Intermediate lengths at ls are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

| 2) $10 \text{mm} \ge l_g \le 18 \text{mm} \triangleq \pm 1,51$ | nm |
|----------------------------------------------------------------|----|
| $18 \text{mm} \ge l_g \le 30 \text{mm} \triangleq \pm 1,71$    | mm |

| tischer Power-Rast and Construction Screws | Annex A5 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

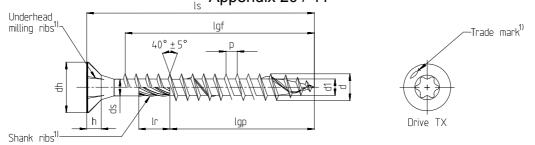
Page 19 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 19 / 41



Power-Fast self-drilling screw - Countersunk headhole screw with full thread

| - C             |                  |                             | st sen-u     | 1 11111115  | Sort                                | - V         | Jun             | ici sui           | 1111     | auno              | ic sci                |         | 1011 10 | uii tii | ıcau   |             |    |
|-----------------|------------------|-----------------------------|--------------|-------------|-------------------------------------|-------------|-----------------|-------------------|----------|-------------------|-----------------------|---------|---------|---------|--------|-------------|----|
|                 |                  | steel                       | reatments:   | hlue zin    | c_nlate                             | d blue      | zinc-n          | lated >1          | 2um      |                   |                       |         |         |         |        |             |    |
|                 |                  |                             |              | 4.          | _                                   |             | ,5              |                   | •        |                   | Λ                     |         |         |         |        |             |    |
| INC             |                  | nal diam                    |              |             |                                     |             |                 |                   | ,0       |                   | ,0                    |         |         |         |        |             |    |
| d               |                  | uter diame                  |              | 4,0         | )()                                 | 4,          | 4,50 5,00       |                   |          | 6,00              |                       |         |         |         |        |             |    |
|                 |                  | llow. devi                  |              |             |                                     | ±0,30       |                 |                   |          |                   |                       |         |         |         |        |             |    |
| $d_1$           |                  | ore diame                   |              | 2,5         |                                     | 2,          |                 | 3,                | 00       |                   | 00                    |         |         |         |        |             |    |
| G <sub>1</sub>  |                  |                             | w. deviation |             |                                     | +0,10       |                 |                   |          | ,20               |                       |         |         |         |        |             |    |
| $d_{\rm h}$     |                  | ead diame                   |              | 8,0         | 00                                  | 9,0         |                 |                   | ,00      | 12,               | ,00                   |         |         |         |        |             |    |
| G <sub>II</sub> |                  | llow. devi                  |              |             |                                     |             |                 | +0,10             |          | ı                 |                       |         |         |         |        |             |    |
| $d_{\rm s}$     |                  | ank diam                    |              | 2,9         | 90                                  | 3,2         |                 | - )               | 60       | 4,3               | 30                    |         |         |         |        |             |    |
|                 | Allow. deviation |                             |              |             |                                     |             | ,               | +0,10             |          | 1                 |                       |         |         |         |        |             |    |
| h               |                  | ead height                  |              | 2,5         |                                     |             | 70              |                   | 00       |                   | 80                    |         |         |         |        |             |    |
| n               |                  | Thread pitch                |              |             | 00                                  | 2,2         | 20              |                   | 50       | 3,00-             | -4,50                 |         |         |         |        |             |    |
| Р               | Allow. deviation |                             |              |             | $\pm 10\%$                          |             |                 |                   |          |                   |                       |         |         |         |        |             |    |
| $d_{s1}$        |                  | Shank diameter              |              | 3,70 3,85   |                                     |             | 4,50 4,20       |                   |          |                   |                       |         |         |         |        |             |    |
| usi             | Allow. deviation |                             |              |             |                                     |             |                 | ,10               |          |                   |                       |         |         |         |        |             |    |
|                 |                  | Drive PZ                    |              |             |                                     | 2           | 2               |                   |          | 3                 | 3                     |         |         |         |        |             |    |
|                 | Scr              | Screw length l <sub>s</sub> |              |             | Standard thread length   lgf = Full |             |                 |                   |          |                   | 1   1 <sub>gp</sub> = | Partial | thread  | d   Tol | erance | $: \pm 2,0$ | 2) |
| Nomi            | nal              | min                         | max          | 1.          | 1                                   | 1.          | 1               | 1.                | 1        | 1.                | 1                     |         |         |         |        |             |    |
| leng            |                  |                             |              | $l_{ m gf}$ | $l_{gp}$                            | $l_{ m gf}$ | l <sub>gp</sub> | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$              |         |         |         |        |             |    |
| 25              |                  | 23,75                       | 26,25        | 17,5        |                                     |             |                 |                   |          |                   |                       |         |         |         |        |             |    |
| 27              |                  | 25,75                       | 28,25        | 19,5        |                                     |             |                 |                   |          |                   |                       |         |         |         |        |             |    |
| 30              |                  | 28,75                       | 31,25        | 22,5        |                                     | 19          |                 |                   |          |                   |                       |         |         |         |        |             |    |
| 35              |                  | 33,50                       | 36,50        | 27,5        |                                     | 24          |                 |                   |          |                   |                       |         |         |         |        |             |    |
| 40              |                  | 38,50                       | 41,50        | 32,5        |                                     | 29          |                 | 29                |          |                   |                       |         |         |         |        |             |    |
| 45              |                  | 43,50                       | 46,50        | 37,5        |                                     | 34          |                 | 34                |          |                   |                       |         |         |         |        |             |    |
| 50              |                  | 48,50                       | 51,50        | 42,5        |                                     | 39          |                 | 39                |          | 41                |                       |         |         |         |        |             |    |
| 55              |                  | 53,50                       | 56,50        | 47,5        |                                     | 44          |                 | 44                |          | 46                |                       |         |         |         |        |             |    |
| 60              |                  | 58,50                       | 61,50        | 50,0        |                                     | 49          |                 | 49                |          | 51                |                       |         |         |         |        |             |    |
| 70              |                  | 68,50                       | 71,50        |             |                                     | 59          |                 | 60                |          | 60                |                       |         |         |         |        |             |    |
| 80              |                  | 78,50                       | 81,50        |             |                                     | 59          |                 | 60                |          | 60                |                       |         |         |         |        |             |    |
| 90              |                  | 88,25                       | 91,75        |             |                                     | 59          |                 | 60                |          | 60                |                       |         |         |         |        |             |    |
| 100             | )                | 98,25                       | 101,75       |             |                                     |             |                 | 60                |          | 60                |                       |         |         |         | . 11 . |             |    |

All sizes in mm


 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq \! 30mm \triangleq \pm 1,\! 7mm \end{array}$ 

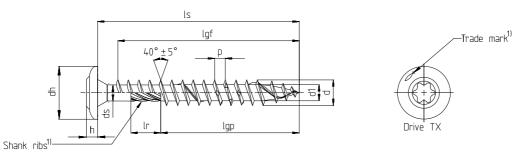
| tischer Power-Fast and Construction Screws | Annex A6 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

<sup>■</sup> Intermediate lengths at l<sub>s</sub> are possible

 $<sup>\</sup>blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$ 

Page 20 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02  $_{\rm ls}$  Appendix 20 / 41




Power-Fast wood construction screw - Countersunk head with full- or partial thread

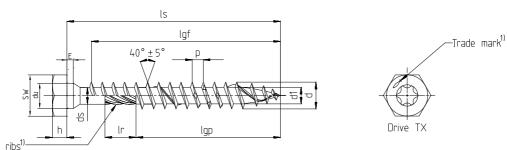
| ■ Ca              | rbon steel                      |                  |                   |                                                       |                   |                   |                       |                        |                      |            |          |         | pure    |         |               |   |
|-------------------|---------------------------------|------------------|-------------------|-------------------------------------------------------|-------------------|-------------------|-----------------------|------------------------|----------------------|------------|----------|---------|---------|---------|---------------|---|
|                   | ssible surface<br>minal dia     |                  |                   | or blue<br><b>,0</b>                                  |                   | ated, b. $0$      |                       | e-plated<br><b>).0</b> | l ≥12μn<br><b>12</b> | -          | ıs-zince | d       |         |         |               |   |
| 110               | Outer dian                      |                  |                   | 00                                                    |                   | 00                |                       | ,00                    |                      | ,00        |          |         |         |         | 1             |   |
| d                 | Allow. dev                      |                  | 0,                |                                                       | ,30               | 00                |                       | ,00<br>.40             |                      | ,00<br>,50 |          |         |         |         |               |   |
|                   | Core diam                       |                  | 1                 | 00                                                    |                   | 40                |                       | , -                    |                      | 60         |          |         |         |         |               |   |
| $d_1$             | Allow. dev                      |                  | ٦,                | 00                                                    |                   | ,20               | 6,40                  |                        |                      | ,30        |          |         |         |         |               |   |
|                   | Head diam                       |                  | 12                | ,00                                                   |                   | , <u>40</u>       | 1 2                   | ,40                    |                      | ,30<br>,40 |          |         |         |         |               |   |
| d <sub>h</sub>    |                                 |                  |                   | /+0.10                                                | 17                |                   | .40                   | ,+0                    |                      | ,50        |          |         |         |         |               |   |
|                   | Allow. deviation Shank diameter |                  | - )               | 30                                                    | 5                 | 90                |                       | 10                     |                      | 30<br>30   |          |         |         |         |               |   |
| ds                | Allow. dev                      |                  | _ /               | /+0,10                                                | 5,                | 90                |                       | ,20                    | 0,.                  | 30         |          |         |         |         |               |   |
| h                 | Head heigh                      |                  |                   | 80                                                    | 5                 | 10                |                       | 10                     | 7                    | 20         |          |         |         |         |               |   |
| - 11              | Thread pite                     |                  | - /               | -4,50                                                 | ,                 | 00                | 0,                    |                        | 50                   | 20         |          |         |         |         |               |   |
| p                 | Allow. dev                      |                  | 5,00              | т, ЭО                                                 | <u>0</u> ,        |                   | 0%                    | /,-                    |                      |            |          |         |         |         |               |   |
| $\overline{}$     | Shank ribs                      |                  | Q                 | 00                                                    |                   | -1                |                       | ,00                    |                      |            |          |         |         |         |               |   |
| l <sub>r</sub> 1) | Allow. dev                      |                  | 0,                | 00                                                    |                   | -2.               |                       | ,00                    |                      |            |          |         |         |         |               |   |
|                   | Drive T                         |                  | 3                 | 0                                                     |                   |                   |                       |                        | 5                    | 0          |          |         |         |         |               |   |
|                   | Direc 12                        | ·                |                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                   |                   |                       |                        |                      |            | -Dortio  | l thron | d   Tal | larona  | · + 2 0       | ١ |
| NT.               | . 1                             |                  |                   | Stanua                                                | na uno            | eau iei           | ıgın   1 <sub>9</sub> | gf – Ful               | i unea               | iu   Igp-  | -r ai ua | lunea   | u   101 | lerance | z. ⊥ ∠,∪<br>T | , |
| Nomin<br>lengt    | mın                             | max              | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$                                     | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$     | $l_{gp}$               | $l_{\mathrm{gf}}$    | $l_{gp}$   |          |         |         |         |               |   |
| 60                | 58,50                           | 61,50            | 50                | 36                                                    |                   |                   |                       |                        |                      |            |          |         |         |         |               |   |
| 80                | 78,50                           | 81,50            | 70                | 50                                                    | 70                | 50                |                       | 52                     |                      |            |          |         |         |         |               |   |
| 90                | 88,25                           | 91,75            |                   | 60                                                    | 80                | 50                |                       |                        |                      |            |          |         |         |         |               |   |
| 100               | 98,25                           | 101,75           |                   | 60                                                    | 80                | 50                |                       | 52                     |                      | 60         |          |         |         |         |               |   |
| 120               | 118,25                          | 121,75           |                   | 70                                                    | 100               | 75                |                       | 80                     |                      | 80         |          |         |         |         |               |   |
| 140               | 138,00                          | 142,00           |                   | 70                                                    |                   | 75                |                       | 80                     |                      | 80         |          |         |         |         |               |   |
| 160               | 158,00                          | 162,00           |                   | 70                                                    |                   | 75                |                       | 80                     |                      | 80         |          |         |         |         |               |   |
| 180               |                                 | 182,00           |                   | 70                                                    |                   | 75                |                       | 100                    |                      | 100        |          |         |         |         |               |   |
| 200               |                                 | 202,00           |                   | 70                                                    |                   | 100               |                       | 100                    |                      | 100        |          |         |         |         |               |   |
| 220               | 218,00                          | 222,00           |                   | 70                                                    |                   | 100               |                       | 100                    |                      | 100        |          |         |         |         | 1             |   |
| 240<br>260        |                                 | 242,00<br>262,00 |                   | 70<br>70                                              |                   | 100               |                       | 100                    |                      | 120<br>120 |          |         |         |         |               |   |
| 280               |                                 | 282,00           |                   | 70                                                    |                   | 100               |                       | 115                    |                      | 120        |          |         |         |         |               |   |
| 300               |                                 | 302,00           |                   | 70                                                    |                   | 100               |                       | 115                    |                      | 120        |          |         |         |         |               |   |
| 320               | 317,00                          | 323,00           |                   | 70                                                    |                   | 100               |                       | 115                    |                      | 120        |          |         |         |         |               |   |
| 330               |                                 | 333,00           |                   |                                                       |                   | 100               |                       | 115                    |                      |            |          |         |         |         |               |   |
| 340               | 337,00                          | 343,00           |                   |                                                       |                   | 100               |                       | 115                    |                      |            |          |         |         |         |               |   |
| 350               | 347,00                          | 353,00           |                   |                                                       |                   | 100               |                       | 110                    |                      | 145        |          |         |         |         |               |   |
| 360               |                                 | 363,00           |                   |                                                       |                   | 100               |                       | 115                    |                      | 1.0        |          |         |         |         |               |   |
| 380               |                                 | 383,00           |                   |                                                       |                   | 100               |                       | 115                    |                      |            |          |         |         |         |               |   |
| 400               |                                 | 403,00           |                   |                                                       |                   |                   |                       |                        |                      |            |          |         |         |         |               |   |
| 450/50            |                                 | _                |                   |                                                       |                   | 100               |                       | 115                    |                      | 145        |          |         |         |         |               |   |
| 550/60            |                                 |                  |                   |                                                       |                   |                   |                       |                        |                      | 145        |          |         |         |         | 1             |   |

- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

| fischer Power-Fast and Construction Screws | Annex A7 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

Page 21 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 21 / 41




Power-Fast wood construction screw - Flange head with full- or partial thread

|                 | arbon steel                     | ast wood             |                   |                                                                                         |                   |                   |                   | •                  |                   |                   |          |   | ı tıaı |       | <u></u> |  |
|-----------------|---------------------------------|----------------------|-------------------|-----------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|----------|---|--------|-------|---------|--|
|                 | ossible surface                 |                      |                   |                                                                                         | zinc-p            | olated, b         |                   |                    |                   |                   | ıs-zince | d | ı      |       |         |  |
| N               | ominal dia                      | meter                | 6                 | ,0                                                                                      | 8                 | 3,0               | 10                | 0,0                | 12                | 2,0               |          |   |        |       |         |  |
| d               | Outer diam                      | eter                 | 6,                | 00                                                                                      | 8.                | ,00               | 10                | ,00                | 12                | ,00               |          |   |        |       |         |  |
| u               | Allow. dev                      |                      |                   |                                                                                         | ,30               |                   |                   | ,40                |                   | ,50               |          |   |        |       |         |  |
| $d_1$           | Core diame                      |                      | 4,                | 00                                                                                      | 5.                | ,40               | 6,40              |                    | 7,60              |                   |          |   |        |       |         |  |
| u <sub>1</sub>  | Allow. dev                      | iation               |                   |                                                                                         | ±0                | ,20               |                   |                    | ±0                | ,30               |          |   |        |       |         |  |
| $d_h$           | Head diame                      |                      | 13                | ,70                                                                                     | 21                | ,00               |                   | ,70                |                   | ,90               |          |   |        |       |         |  |
| G <sub>n</sub>  | Allow. dev                      | iation               |                   | /+1,30                                                                                  |                   | ,00               | -1,20/            | +2,80              | -1,40/            | +2,60             |          |   |        |       |         |  |
| d.              | d <sub>s</sub> Shank diameter   |                      |                   | 30                                                                                      | 5,                | ,90               |                   | 10                 |                   | ,30               |          |   |        |       |         |  |
| us              | d <sub>s</sub> Allow. deviation |                      | -0,30             | /+0,10                                                                                  |                   | ±0                | ,20               |                    |                   | ,30               |          |   |        |       |         |  |
| h               | Head height                     |                      |                   |                                                                                         | 50                |                   | 5,                | 5,60 6,70<br>±0,50 |                   |                   |          |   |        |       |         |  |
|                 | h Allow. deviation              |                      |                   |                                                                                         | ,00               |                   |                   |                    |                   |                   |          |   |        |       |         |  |
| p               | Thread pitc                     |                      | 3,00              | -4,50                                                                                   | 6.                | ,00               |                   | 7,                 | 50                |                   |          |   |        |       |         |  |
| Р               | Allow. dev                      |                      |                   |                                                                                         |                   | ±1                |                   |                    |                   |                   |          |   |        |       |         |  |
| $l_{r}^{1}$     | Shank rib le                    |                      | 8,                | 00                                                                                      |                   |                   |                   | ,00                |                   |                   |          |   |        |       |         |  |
| -1              | Allow. dev                      |                      |                   |                                                                                         |                   |                   | ,00               |                    |                   |                   |          |   |        |       |         |  |
|                 | Drive TX                        |                      |                   | 0                                                                                       |                   |                   | .0                |                    |                   | 50                |          |   |        |       |         |  |
|                 | Screw lengt                     | th l <sub>s</sub>    | Stand             | Standard thread length   $l_{gf}$ = Full thread   $l_{gp}$ =Partial thread   Tolerance: |                   |                   |                   |                    |                   |                   |          |   | rance: | ± 2,0 |         |  |
| Nomin<br>lengtl | mın                             | max                  | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$                                                                       | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$  | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ |          |   |        |       |         |  |
| 60              | 58,50                           | 61,50                | 50                | 36                                                                                      |                   |                   |                   |                    |                   |                   |          |   |        |       |         |  |
| 80              | 78,50                           | 81,50                | 70                | 50                                                                                      | 70                | 50                |                   | 52                 |                   |                   |          |   |        |       |         |  |
| 90              | 88,25                           | 91,75                |                   | 60                                                                                      | 80                | 50                |                   |                    |                   |                   |          |   |        |       |         |  |
| 100             | 98,25                           | 101,75               |                   | 60                                                                                      | 80                | 50                |                   | 52                 |                   | 60                |          |   |        |       |         |  |
| 120             | 118,25                          | 121,75               |                   | 70                                                                                      | 100               | 75                |                   | 80                 |                   | 80                |          |   |        |       |         |  |
| 140             | 138,00                          | 142,00               |                   | 70                                                                                      |                   | 75                |                   | 80                 |                   | 80                |          |   |        |       |         |  |
| 160             |                                 | 162,00               |                   | 70                                                                                      |                   | 75                |                   | 80                 |                   | 80                |          |   |        |       |         |  |
| 180             |                                 | 182,00               |                   | 70                                                                                      |                   | 75                |                   | 100                |                   | 100               |          |   |        |       |         |  |
| 200             |                                 | 202,00               |                   | 70                                                                                      |                   | 100               |                   |                    |                   | 100               |          |   |        |       |         |  |
| 220             |                                 | 222,00               |                   | 70                                                                                      |                   | 100               |                   | 100                |                   | 100               |          |   |        |       |         |  |
| 240             |                                 | 242,00               |                   | 70                                                                                      |                   | 100               |                   | 100                |                   | 100               |          |   |        |       |         |  |
| 260             |                                 | 262,00               |                   | 70                                                                                      |                   | 100               |                   | 100                |                   | 100               |          |   |        |       |         |  |
| 280             |                                 | 282,00               |                   | 70                                                                                      |                   | 100               |                   | 115                |                   | 120               |          |   |        |       |         |  |
| 300             |                                 | 302,00               |                   | 70                                                                                      |                   | 100               |                   | 115                |                   | 120               |          |   |        |       |         |  |
| 320             |                                 | 323,00               |                   |                                                                                         |                   | 100               |                   | 115                |                   |                   |          |   |        |       |         |  |
| 330             |                                 | 333,00               |                   |                                                                                         |                   |                   |                   | 115                |                   |                   |          |   |        |       |         |  |
| 340             |                                 | 343,00               |                   |                                                                                         |                   | 100               |                   | 115                |                   |                   |          |   |        |       |         |  |
| 350             |                                 | 353,00               |                   |                                                                                         |                   |                   |                   |                    |                   | 145               |          |   |        |       |         |  |
|                 | in steps of 10                  |                      |                   |                                                                                         |                   |                   |                   |                    |                   |                   |          |   |        |       |         |  |
|                 | 00 l <sub>s</sub> -3,00         | l <sub>s</sub> +3,00 |                   |                                                                                         |                   | 100               |                   | 115                |                   |                   |          |   |        |       |         |  |
|                 | in steps of 50                  |                      |                   |                                                                                         |                   |                   |                   |                    |                   |                   |          |   |        |       |         |  |
| 550-60          | $l_{\rm s}$ -3,00               | $l_s +3,00$          |                   |                                                                                         |                   |                   |                   |                    |                   | 145               |          |   |        |       | oc in m |  |

- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

| tischer Power-Fast and Construction Screws | Annex A8 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

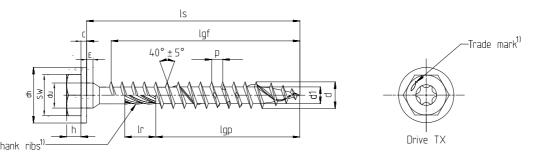
Page 22 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 22 / 41



Shank ribs<sup>1).</sup>

1) optional Power-Fast wood construction screw - Hexagon head with full- or partial thread

|                  | Power-Fast wood construction screw - Hexagon head with full- or partial thread                                                          |                              |                   |                 |                   |            |                     |              |                       |           |        |      |        |               |   |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-----------------|-------------------|------------|---------------------|--------------|-----------------------|-----------|--------|------|--------|---------------|---|--|
|                  | <ul> <li>Carbon steel</li> <li>Possible surface treatments: yellow or blue zinc-plated, blue zinc-plated ≥12µm, bonus-zinced</li> </ul> |                              |                   |                 |                   |            |                     |              |                       |           |        |      |        |               |   |  |
| No               | ominal diar                                                                                                                             | neter                        | 6                 | ,0              | 8                 | ,0         | 10                  | ),0          | 12                    | 2,0       |        |      |        |               |   |  |
| d                | Outer dian                                                                                                                              |                              | 6,                | 00              | 8,                | 00         | 10                  | ,00          | 12                    | ,00       |        |      |        |               |   |  |
| a                | Allow. dev                                                                                                                              | iation                       |                   | ±0              | ,30               |            | ±0                  | ,40          |                       | ,50       |        |      |        |               |   |  |
| $d_1$            | Core diame                                                                                                                              |                              | 4,                | 00              |                   | 40         | 6,                  | 40           |                       | 60        |        |      |        |               |   |  |
| u <sub>1</sub>   | Allow. dev                                                                                                                              |                              |                   |                 |                   | ,20        |                     |              | ±0,30                 |           |        |      |        |               |   |  |
| $d_{\mathrm{u}}$ | Underhead                                                                                                                               |                              | 6,                | 25              |                   | 25         |                     | 10,30        |                       | ,40       |        |      |        |               |   |  |
| Gu               | Allow. dev                                                                                                                              |                              |                   | -0,<br>90       | 80                |            |                     | ,90          |                       | ,00       |        |      |        |               |   |  |
| SW               |                                                                                                                                         | Wrench size                  |                   |                 | 12                | ,80        |                     | ,80          | 16                    | ,80       |        |      |        |               |   |  |
| 5,,              |                                                                                                                                         | Allow. deviation             |                   |                 |                   | $\pm 0,30$ |                     |              |                       |           |        |      |        |               |   |  |
| Е                | Height                                                                                                                                  |                              | 2,                | 00              | 2,                | 10         |                     | 30           | 3,                    | 30        |        |      |        |               |   |  |
|                  | Allow. dev                                                                                                                              |                              |                   |                 |                   |            | ,50                 |              |                       |           |        |      |        |               |   |  |
| $d_{\rm s}$      | Shank dian                                                                                                                              |                              |                   | 30              | 5,                | 90         |                     | 10           | 8,                    | 30        |        |      |        |               |   |  |
|                  | Allow. dev                                                                                                                              |                              |                   | +0,10           |                   |            |                     | ,20          | _                     |           |        |      |        |               |   |  |
| h                | Head heigh                                                                                                                              |                              |                   | 00              |                   | 50         | 5,                  | 20           |                       | 70        |        |      |        |               |   |  |
|                  | Allow. dev                                                                                                                              |                              |                   | ,30             |                   | ,40        |                     |              | ,50<br>50             |           |        |      |        |               |   |  |
| р                | Thread pite                                                                                                                             |                              | 3,00              | -4,50           | 6,                | 00         | 00/                 | 7,           | 50                    |           |        |      |        |               |   |  |
| •                | Allow. dev                                                                                                                              |                              |                   | 0               | 00                | ±1         | 0%                  | 1.2          | 00                    |           |        |      |        |               |   |  |
| $1_{r}^{1)}$     | 1 <sub>r</sub> <sup>1)</sup> Shank rib length                                                                                           |                              |                   | 8,              | 00                |            | 00                  | 13           | ,00                   |           |        |      |        |               |   |  |
|                  | Allow. deviation                                                                                                                        |                              |                   | 0               |                   |            | 00,00               |              |                       | · n       |        |      |        |               |   |  |
|                  | Drive TX                                                                                                                                |                              |                   |                 |                   |            |                     |              | 0                     |           |        |      | 2)     |               |   |  |
|                  | Screw lengt                                                                                                                             | n Is                         | Stanc             | lard thi        | ead le            | ngth   l   | <sub>gf</sub> = Ful | l threa      | d   l <sub>gp</sub> = | Partial   | thread | Tole | rance: | $\pm 2,0^{2}$ | , |  |
| Nomin            | min                                                                                                                                     | max                          | $l_{\mathrm{gf}}$ | l <sub>gp</sub> | $l_{\mathrm{gf}}$ | $l_{gp}$   | $l_{gf}$            | $l_{\rm gp}$ | $l_{gf}$              | $l_{gp}$  |        |      |        |               |   |  |
| lengt            | th                                                                                                                                      |                              | Ŭ                 |                 | -gı               | *sp        | 1g1                 | -sp          | 1gi                   | *sp       |        |      |        |               |   |  |
| 60               | 58,5                                                                                                                                    | 61,5                         | 50                | 30              |                   |            |                     |              |                       |           |        |      |        |               |   |  |
| 80               | 78,5                                                                                                                                    | 81,5                         | 70                | 50              | 70                | 50         |                     | 52           |                       |           |        |      |        |               |   |  |
| 90               | 88,25                                                                                                                                   | 91,75                        |                   | 60              | 80                | 50         |                     |              |                       |           |        |      |        |               |   |  |
| 100              |                                                                                                                                         | 101,75                       |                   | 60              | 80                | 50         |                     | 52           |                       | 60        |        |      |        |               |   |  |
| 120              |                                                                                                                                         | 121,75                       |                   | 70              | 100               | 75<br>75   |                     | 80<br>80     |                       | 80        |        |      |        | -             |   |  |
| 140/16           |                                                                                                                                         | 1 <sub>s</sub> +2,00         |                   | 70<br>70        |                   | 75         |                     | 100          |                       | 80<br>100 |        |      |        |               |   |  |
| 200/22           |                                                                                                                                         | $l_s + 2,00$                 |                   | 70              |                   | 100        |                     | 100          |                       | 100       |        |      |        |               |   |  |
| 240/26           |                                                                                                                                         | $l_s + 2,00$<br>$l_s + 2,00$ |                   | 70              |                   | 100        |                     | 100          |                       | 120       |        |      |        |               |   |  |
| 280/30           |                                                                                                                                         | $l_s + 2,00$<br>$l_s + 2,00$ |                   | 70              |                   | 100        |                     | 115          |                       | 120       |        |      |        |               |   |  |
| 320              |                                                                                                                                         | 323,00                       |                   | 70              |                   | 100        |                     | 115          |                       | 120       |        |      |        |               |   |  |
| 330              |                                                                                                                                         | 333,00                       |                   |                 |                   | 100        |                     | 115          |                       |           |        |      |        |               |   |  |
| 340              |                                                                                                                                         | 343,00                       |                   |                 |                   | 100        |                     | 115          |                       |           |        |      |        |               |   |  |
| 350              |                                                                                                                                         | 353,00                       |                   |                 |                   | 100        |                     | 110          |                       | 145       |        |      |        |               |   |  |
|                  | $\frac{360}{380}$ $\frac{1_s - 3,00}{1_s + 3,00}$                                                                                       |                              |                   |                 |                   | 100        |                     | 115          |                       | 1.0       |        |      |        |               |   |  |
|                  | in steps of 50mm                                                                                                                        |                              |                   |                 |                   |            |                     |              | t                     | t         |        |      |        |               |   |  |
| 400-50           |                                                                                                                                         | $l_s + 3,00$                 |                   |                 |                   | 100        |                     | 115          |                       | 145       |        |      |        |               |   |  |
| 550/60           |                                                                                                                                         |                              |                   |                 |                   |            |                     |              |                       | 145       |        |      |        |               |   |  |


All sizes in mm

- Intermediate lengths at  $l_{\rm s}$  are possible
- Threaded lengths between  $4{\times}d \leq l_g \leq l_{gmax}$  are possible

 $^{2)}$  18mm  $\geq l_g \leq$  30mm  $\triangleq \pm 1{,}7mm$ 

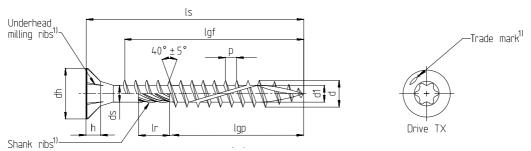
| tischer Power-Fast and Construction Screws | Annex A9 of European Technical Assessment |
|--------------------------------------------|-------------------------------------------|
| Sizes and Material                         | ETA-11/0027                               |

Page 23 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 23 / 41



Power-Fast wood construction screw - Hexagon head with washer and full- or partial thread

| Power-Fast wood construction screw - Hexagon head with washer and full- or partial thread |                              |                                         |                   |              |                   |              |                   |                        |              |           |          |          |               |   |   |                                                  |
|-------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|-------------------|--------------|-------------------|--------------|-------------------|------------------------|--------------|-----------|----------|----------|---------------|---|---|--------------------------------------------------|
|                                                                                           | oon steel<br>sible surface   | treatments:                             | yellow            | or blue      | zinc-p            | lated, b     | olue zin          | c-plate                | d ≥12μ       | m, bonı   | ıs-zinc  | ed       |               |   |   |                                                  |
| Non                                                                                       | ninal dian                   | ieter                                   | 6                 | ,0           | 8                 | ,0           | 10                | ),0                    | 12           | 2,0       |          |          |               |   |   |                                                  |
| .1                                                                                        | Outer diame                  | ter                                     | 6,                | 00           | 8,                | 00           | 10                | ,00                    | 12           | ,00       |          |          |               |   |   | ,                                                |
| d                                                                                         | Allow. devia                 | ation                                   |                   | ±0,          | ,30               |              | ±0                | ,40                    | ±0           | ,50       |          |          |               |   |   |                                                  |
| d                                                                                         | Core diamet                  |                                         | 4,                | 00           | 5,                | 40           | 6,                | 40                     | 7,           | 60        |          |          |               |   |   |                                                  |
|                                                                                           | Allow. devia                 |                                         |                   |              |                   | ,20          |                   |                        |              | ,30       |          |          |               |   |   |                                                  |
| d,                                                                                        | Head diamet                  |                                         | 15                | ,00          |                   | ,00          | 21                | ,50                    |              | ,40       |          |          |               |   |   |                                                  |
|                                                                                           | Allow. devia                 |                                         |                   | 1,2          |                   |              | - 10              |                        | 50           | 10        |          |          |               |   |   |                                                  |
| d                                                                                         | Underhead of                 | 6,                                      | 25                |              | 25                |              | ,30               |                        | ,40          |           |          |          |               |   |   |                                                  |
|                                                                                           | Allow. devia                 | 0                                       | -0,               |              | 90                |              | ,90               |                        | ,00,         |           |          |          |               |   |   |                                                  |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                     | Wrench size<br>Allow. devia  | 9,90 12,80 ±0,,                         |                   |              |                   |              | ,80               | 10                     | ,80          |           |          |          |               |   |   |                                                  |
|                                                                                           | Washer heig                  |                                         | 1                 | 80           | 2                 | 00           |                   | 20                     | 2            | 50        |          |          |               |   |   |                                                  |
|                                                                                           | Washer herg<br>Height        | ,111                                    |                   | 00           |                   | 10           |                   | 30                     |              | 30        |          |          |               |   |   |                                                  |
|                                                                                           | Allow. devia                 | ation                                   |                   | 00           |                   |              | ,50               | 50                     | ٥,           | 50        |          |          |               |   |   |                                                  |
|                                                                                           | Shank diame                  |                                         | 4,                | 30           | 5.                | 90           |                   | 10                     | 8,           | 30        |          |          |               |   |   |                                                  |
|                                                                                           | Allow. devia                 |                                         | _                 | +0,10        | ,                 |              |                   | ,20                    |              |           |          |          |               |   |   | ,                                                |
|                                                                                           | Head height                  |                                         | 4,                | 00           | 4,                | 50           | 5,                | 20                     | 5,           | 70        |          |          |               |   |   |                                                  |
| h                                                                                         | Allow. devia                 | ation                                   | ±0                | ,30          | ±0                | ,40          |                   | $\pm 0$                | ,50          |           |          |          |               |   |   |                                                  |
| n                                                                                         | Thread pitch                 | 3,00                                    | -4,50             | 6,           | 00                |              | 7,                | 50                     |              |           |          |          |               |   |   |                                                  |
|                                                                                           | Allow. devia                 |                                         |                   |              | ±10               | 0%           |                   |                        |              |           |          |          |               |   |   |                                                  |
|                                                                                           | Shank rib le                 | 8,00                                    |                   |              |                   |              | 13                | ,00                    |              |           |          |          |               |   |   |                                                  |
| -1                                                                                        | Allow. deviation             |                                         |                   | •            |                   | -2,          |                   |                        | ı _          |           |          |          |               |   |   |                                                  |
|                                                                                           | Drive TX                     | 1                                       | 30                |              |                   |              | 0                 |                        | 50           |           |          |          | 2)            |   |   |                                                  |
|                                                                                           | Screw length                 | ı l <sub>s</sub>                        | Standard thre     |              | ead length   lgf= |              | Full th           | read   l <sub>gr</sub> | =Partia      | al threac | l   Tole | rance:   | $\pm 2,0^{2}$ | ı | 1 |                                                  |
| Nomina                                                                                    | mın                          | max                                     | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ | $l_{\rm gf}$      | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$               | $l_{\rm gf}$ | $l_{gp}$  |          |          |               |   |   |                                                  |
| length<br>60                                                                              | 58,50                        | 61,50                                   | 50                | 30           |                   | -            |                   |                        |              | -         |          |          |               |   |   | +                                                |
| 80                                                                                        | 78,50                        | 81,50                                   | 70                | 50           | 70                | 50           |                   | 52                     |              |           |          |          |               |   |   | +                                                |
| 90                                                                                        | 88,25                        | 91,75                                   | 70                | 60           | 80                | 50           |                   | 32                     |              |           |          |          |               |   |   | +                                                |
| 100                                                                                       | 98,25                        | 101,75                                  |                   | 60           | 80                | 50           |                   | 52                     |              | 60        |          |          |               |   |   |                                                  |
| 120                                                                                       | 118,25                       | 121,75                                  |                   | 70           | 100               | 75           |                   | 80                     |              | 80        |          |          |               |   |   |                                                  |
| 140/160                                                                                   |                              | $l_s + 2,00$                            |                   | 70           |                   | 75           |                   | 80                     |              | 80        |          |          |               |   |   |                                                  |
| 180                                                                                       | 178,00                       | 182,00                                  |                   | 70           |                   | 75           |                   | 100                    |              | 100       |          |          |               |   |   |                                                  |
| 200/220                                                                                   | $l_{\rm s}$ $-2,00$          | $l_s + 2,00$                            |                   | 70           |                   | 100          |                   | 100                    |              | 100       |          |          |               |   |   |                                                  |
| 240/260                                                                                   |                              | $l_s + 2,00$                            |                   | 70           |                   | 100          |                   | 100                    |              | 120       |          |          |               |   |   |                                                  |
| 280/300                                                                                   |                              | $l_s + 2,00$                            |                   | 70           |                   | 100          |                   | 115                    |              | 120       |          |          |               |   |   |                                                  |
| 320                                                                                       | 317,00                       | 323,00                                  |                   |              |                   | 100          |                   | 115                    |              |           |          |          |               |   |   | <b>↓</b>                                         |
| 330                                                                                       | 327,00                       | 333,00                                  |                   |              |                   | 100          |                   | 115                    |              |           |          |          |               |   |   | +                                                |
| 340                                                                                       | 337,00                       | 343,00                                  |                   |              |                   | 100          |                   | 115                    |              | 1.4.7     |          |          | 1             |   |   | <del>                                     </del> |
| 350                                                                                       | 347,00 353,00                |                                         |                   |              |                   | 100          |                   | 115                    |              | 145       |          |          |               |   |   | +                                                |
| 360/380                                                                                   | $l_s = 3,00$<br>steps of 50r | l <sub>s</sub> +3,00                    |                   |              |                   | 100          |                   | 115                    |              |           |          |          | -             |   |   | +-                                               |
| 400-500                                                                                   |                              | $\frac{\text{nm}}{l_{\text{s}} + 3,00}$ |                   |              |                   | 100          |                   | 115                    |              | 145       |          |          |               |   |   | +                                                |
| 550/600                                                                                   |                              | $l_s + 3,00$ $l_s + 3,00$               |                   |              |                   | 100          |                   | 113                    |              | 145       |          |          |               |   |   | +                                                |
| 220/000                                                                                   | $I_S = 3,00$                 | 1s + 3,00                               |                   |              |                   | ļ            | <u> </u>          |                        |              | 177       |          | <u> </u> | 1             |   | l |                                                  |


All sizes in mm

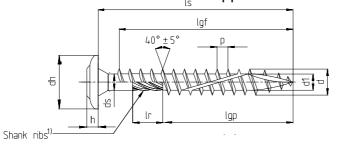
- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

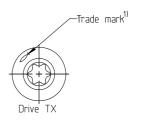
 $^{2)}~18mm \geq l_g \leq 30mm \triangleq \pm 1,7mm$ 

| fischer Power-Fast and Construction Screws | Annex A10 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 24 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 24 / 41




FCS wood construction screw - Countersunk head with full- or partial thread


|                           |                                                                                                                                         |              | constru          | iction            | scre              | w - C             | ount         | ersui                | ік пе    | au w       | ıııı ıu | 11- 01   | part    | ıaı uı  | reau    |    |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-------------------|-------------------|-------------------|--------------|----------------------|----------|------------|---------|----------|---------|---------|---------|----|--|
|                           | <ul> <li>Carbon steel</li> <li>Possible surface treatments: yellow or blue zinc-plated, blue zinc-plated ≥12μm, bonus-zinced</li> </ul> |              |                  |                   |                   |                   |              |                      |          |            |         |          |         |         |         |    |  |
|                           |                                                                                                                                         |              |                  |                   |                   |                   |              | lue zin              | c-plate  | a ≥12μ<br> | m, bon  | us-zinc  | ea      |         |         | 1  |  |
| INC                       |                                                                                                                                         | nal dian     |                  |                   | ,0                |                   | ),0          |                      |          |            |         |          |         |         |         |    |  |
| d                         |                                                                                                                                         | uter diame   |                  |                   | 00                | 10                | ,00          |                      |          |            |         |          |         |         |         |    |  |
| u                         |                                                                                                                                         | llow. devi   |                  |                   | ,30               |                   | ,40          |                      |          |            |         |          |         |         |         |    |  |
| $d_1$                     |                                                                                                                                         | ore diame    |                  | 5,                | 40                |                   | 35           |                      |          |            |         |          |         |         |         |    |  |
| uı                        | Allow. deviation                                                                                                                        |              |                  | -0,30/+0,20       |                   |                   |              |                      |          |            |         |          |         |         |         |    |  |
| $d_h$                     |                                                                                                                                         | ead diame    |                  | 14                | ,40               |                   | ,40          |                      |          |            |         |          |         |         |         |    |  |
| $\mathbf{u}_{\mathrm{h}}$ | A.                                                                                                                                      | llow. devi   | ation            |                   | ±0                | ,40               |              |                      |          |            |         |          |         |         |         |    |  |
| $d_s$                     | Sł                                                                                                                                      | nank diam    | eter             | 5,                | 90                |                   | 10           |                      |          |            |         |          |         |         |         |    |  |
| $\mathbf{u}_{\mathrm{s}}$ |                                                                                                                                         | llow. devi   |                  |                   | -0,30/+0,         |                   |              |                      |          |            |         |          |         |         |         |    |  |
| h                         | h Head height                                                                                                                           |              | 6,00             | -7,00             | 7,50              | -8,50             |              |                      |          |            |         |          |         |         |         |    |  |
| n                         |                                                                                                                                         | Thread pitch |                  |                   | 20                |                   | 60           |                      |          |            |         |          |         |         |         |    |  |
| p                         |                                                                                                                                         | llow. devi   |                  |                   | ±1                | 0%                |              |                      |          |            |         |          |         |         |         |    |  |
| $1_{r}^{1}$               |                                                                                                                                         | nank rib le  |                  |                   | 13                | ,0                |              |                      |          |            |         |          |         |         |         |    |  |
| ır '                      |                                                                                                                                         | llow. devi   |                  |                   |                   | 00                |              |                      |          |            |         |          |         |         |         |    |  |
|                           |                                                                                                                                         | Drive TX     |                  |                   | 4                 | 0                 |              |                      |          |            |         |          |         |         |         |    |  |
|                           | Sci                                                                                                                                     | rew lengtl   | ı l <sub>s</sub> | Stand             | dard th           | read le           | ength        | l <sub>gf</sub> = Fi | ull thre | ead   lg   | p=Part  | tial thr | ead   T | oleran' | ce: ± 2 | ,0 |  |
| Nomir<br>lengt            |                                                                                                                                         | min          | max              | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |                      |          |            |         |          |         |         |         |    |  |
| 80                        |                                                                                                                                         | 78,50        | 81,50            | 70                | 50                |                   | 52           |                      |          |            |         |          |         |         |         |    |  |
| 90                        |                                                                                                                                         | 88,25        | 91,75            | 80                | 50                |                   | 52           |                      |          |            |         |          |         |         |         |    |  |
| 100                       | )                                                                                                                                       | 98,25        | 101,75           | 80                | 50                |                   | 52           |                      |          |            |         |          |         |         |         |    |  |
| 110                       | )                                                                                                                                       | 108,25       | 111,75           | 100               | 75                |                   | 80           |                      |          |            |         |          |         |         |         |    |  |
| 120                       | )                                                                                                                                       | 118,25       | 121,75           |                   | 75                |                   | 80           |                      |          |            |         |          |         |         |         |    |  |
|                           | in st                                                                                                                                   | teps of 10   | mm               |                   |                   |                   |              |                      |          |            |         |          |         |         |         |    |  |
| 130-4                     |                                                                                                                                         |              |                  |                   |                   | 80                |              |                      |          |            |         |          |         |         |         |    |  |

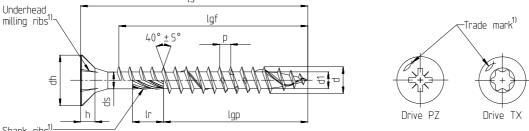
- Intermediate lengths at l<sub>s</sub> are possible
- $\blacksquare \qquad \text{Threaded lengths between } 4 \times d \leq l_g \leq l_{gmax} \text{ are possible}$

| tischer Power-Rast and Construction Screws | Annex A11 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 25 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 25 / 41






FCS wood construction screw - Flange head with partial thread

| Carbon steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                 | 1,            | CS WOO      | u con | su uc             | tion (            | SCIEN             | - I la        | nge     | iicau   | WILII              | paru    | iai iii | cau    |          |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|---------------|-------------|-------|-------------------|-------------------|-------------------|---------------|---------|---------|--------------------|---------|---------|--------|----------|-----|--|
| $ \begin{array}{ c c c c c c c } \hline \textbf{Nominal diameter} & \textbf{8,0} & \textbf{10,0} & & & & & & \\ \hline \textbf{d} & Outer diameter & \textbf{8,00} & 10,00 & & & & & \\ \hline \textbf{Allow. deviation} & -0.40/+0.30 & \pm 0.40 & & & & & \\ \hline \textbf{d}_1 & Core diameter & \textbf{5,40} & \textbf{6,35} & & & & & \\ \hline \textbf{Allow. deviation} & \pm 0.30 & & & & & \\ \hline \textbf{d}_h & Head diameter & 21,00 & 24,70 & & & & \\ \hline \textbf{Allow. deviation} & \pm 1.00 & -1.20/+2.80 & & & & \\ \hline \textbf{d}_s & Shank diameter & \textbf{5,90} & \textbf{7,10} & & & & \\ \hline \textbf{Shank diameter} & \textbf{5,90} & \textbf{7,10} & & & & \\ \hline \textbf{Allow. deviation} & -0.30/+0.20 & & & & & \\ \hline \textbf{Head height} & \textbf{2,50-4,50} & \textbf{3,70-5,70} & & & & \\ \hline \textbf{Thread pitch} & \textbf{5,20} & \textbf{5,60} & & & \\ \hline \textbf{Allow. deviation} & \pm 1.0\% & & & & \\ \hline \textbf{Shank rib length} & \textbf{12,00} & & & & \\ \hline \textbf{Allow. deviation} & \pm 1.00 & & & & \\ \hline \textbf{Screw length l}_s & \textbf{Standard thread length} & \textbf{l}_{gr} = \textbf{Full thread} & \textbf{l}_{gp} = \textbf{Partial thread} & \textbf{Tolerance:} \pm 2.0 \\ \hline \textbf{Nominal length} & min & max & \textbf{l}_{gf} & \textbf{l}_{gp} & \textbf{l}_{gf} & \textbf{l}_{gp} \\ \hline \textbf{80} & \textbf{78,50} & \textbf{81,50} & \textbf{70} & \textbf{50} & \textbf{52} \\ \hline \textbf{90} & \textbf{88,25} & \textbf{91,75} & \textbf{80} & \textbf{50} & \textbf{52} \\ \hline \textbf{100} & \textbf{98,25} & \textbf{101,75} & \textbf{80} & \textbf{50} & \textbf{52} \\ \hline \textbf{101} & \textbf{108,25} & \textbf{111,75} & \textbf{100} & \textbf{75} & \textbf{80} \\ \hline \textbf{in steps pf 10mm} & \textbf{in in steps pf 10mm} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                 |               |             |       |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{ c c c c c c }\hline d & Outer diameter & 8,00 & 10,00 & & & & & \\ Allow. deviation & -0,40/+0,30 & \pm0,40 & & & & \\ \hline d_1 & Core diameter & 5,40 & 6,35 & & & & \\ Allow. deviation & \pm0,30 & & & & \\ \hline d_h & Head diameter & 21,00 & 24,70 & & & & \\ Allow. deviation & \pm1,00 & -1,20/+2,80 & & & & \\ \hline d_s & Shank diameter & 5,90 & 7,10 & & & \\ Shank diameter & 5,90 & 7,10 & & & \\ Allow. deviation & -0,30/+0,20 & & & & \\ \hline h & Head height & 2,50-4,50 & 3,70-5,70 & & & \\ \hline p & Thread pitch & 5,20 & 5,60 & & & \\ \hline Allow. deviation & \pm10\% & & & \\ \hline l_r^{11} & Shank rib length & 12,00 & & & \\ \hline Nominal & min & max & l_{gf} & l_{gp} & l_{gf} & l_{gp} & Partial thread   Tolerance: \pm2,0 \\ \hline \hline Nominal & min & max & l_{gf} & l_{gp} & l_{gf} & l_{gp} \\ \hline 80 & 78,50 & 81,50 & 70 & 50 & 52 & & & \\ \hline 90 & 88,25 & 91,75 & 80 & 50 & 52 & & & \\ \hline 100 & 98,25 & 101,75 & 80 & 50 & 52 & & & \\ \hline 110 & 108,25 & 111,75 & 100 & 75 & 80 & & \\ \hline in steps pf 10mm & & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                 |               |             | r e   |                   |                   |                   | olue zinc     | e-plate | d ≥12μ  | m                  |         |         | 1      |          | Т   |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No                        | omina                           | al diam       | ieter       | 8     | ,0                | 10                | ),0               |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a                         | Oute                            | er diame      | eter        | 8,    | 00                | 10                | ,00               |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a                         | Allo                            | w. devi       | ation       | -0,40 | +0,30             | ±0                | ,40               |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{ c c c c c }\hline Allow. deviation & \pm 0,30 & & & & \\\hline d_h & Head diameter & 21,00 & 24,70 & & & \\\hline Allow. deviation & \pm 1,00 & -1,20/+2,80 & & & \\\hline d_s & Shank diameter & 5,90 & 7,10 & & & \\\hline Allow. deviation & -0,30/+0,20 & & & & \\\hline h & Head height & 2,50-4,50 & 3,70-5,70 & & & \\\hline p & Thread pitch & 5,20 & 5,60 & & & \\\hline Allow. deviation & \pm 10\% & & & & \\\hline l_r^1) & Shank rib length & 12,00 & & & & \\\hline & Allow. deviation & \pm 1,00 & & & \\\hline & Drive TX & 40 & & & \\\hline & Screw length l_s & Standard thread length   l_{gf} = Full thread   l_{gp} = Partial thread   Tolerance: \pm 2,0 \\\hline Nominal length & min & max & l_{gf} & l_{gp} & l_{gf} & l_{gp} \\\hline & 80 & 78,50 & 81,50 & 70 & 50 & 52 & & & \\\hline & 90 & 88,25 & 91,75 & 80 & 50 & 52 & & & \\\hline & 100 & 98,25 & 101,75 & 80 & 50 & 52 & & & \\\hline & 110 & 108,25 & 111,75 & 100 & 75 & 80 \\\hline & in steps pf 10mm & & & & & \\\hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d.                        | d                               |               | ter         | 5,    | 40                | 6,                | 35                |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{u}_1$            | Allo                            | w. devi       | ation       |       | $\pm 0$           | ,30               |                   |               |         |         |                    |         |         |        |          |     |  |
| $ \frac{\text{Allow. deviation}}{\text{ds}} = \frac{\pm 1,00}{\text{Shank diameter}} = \frac{5,90}{5,90} = \frac{7,10}{7,10} = \frac{7,10}{\text{Allow. deviation}} = \frac{5,90}{1,10} = \frac{7,10}{1,10} = \frac{7,10}{1,100} = \frac{7,100}{1,100} =$ | d.                        | Hea                             | Head diameter |             |       | ,00               | 24                | ,70               |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | u <sub>h</sub>            | Allo                            | w. devi       | ation       | ±1    | ,00               | -1,20/            | /+2,80            |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d                         | Shar                            | nk diam       | eter        | 5,    | 90                | 7,                | 10                |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{u}_{\mathrm{s}}$ |                                 |               |             |       |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h                         |                                 |               |             |       |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                         |                                 |               |             |       |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р                         |                                 |               |             |       |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1)                      |                                 |               |             | ·     |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                        |                                 |               | ation       |       | ±1,               |                   | ,00               |               |         |         |                    |         |         |        |          |     |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Dı                              | rive TX       |             |       | 4                 | 0                 |                   |               |         |         |                    |         |         |        |          |     |  |
| length         min         max         lgf         lg         lg         lg         lg         lg         lg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | Screv                           | w length      | $1_{\rm s}$ | Stand | dard th           | read le           | ength             | $l_{gf} = Fu$ | ll thre | ad   lg | <sub>p</sub> =Part | ial thr | ead   T | oleran | ice: ± 2 | 2,0 |  |
| 80     78,50     81,50     70     50     52       90     88,25     91,75     80     50     52       100     98,25     101,75     80     50     52       110     108,25     111,75     100     75     80       120     118,25     121,75     75     80       in steps pf 10mm     100     100     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | min max les               |                                 |               |             |       | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ |               |         |         |                    |         |         |        |          |     |  |
| 100     98,25     101,75     80     50     52       110     108,25     111,75     100     75     80       120     118,25     121,75     75     80       in steps pf 10mm     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80                        |                                 |               | 81,50       | 70    | 50                |                   | 52                |               |         |         |                    |         |         |        |          |     |  |
| 110     108,25     111,75     100     75     80       120     118,25     121,75     75     80       in steps pf 10mm     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                        |                                 | 88,25         | 91,75       | 80    | 50                |                   | 52                |               |         |         |                    |         |         |        |          |     |  |
| 120 118,25 121,75 75 80 in steps pf 10mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                       | ) !                             | 98,25         | 101,75      | 80    | 50                |                   | 52                |               |         |         |                    |         |         |        |          |     |  |
| in steps pf 10mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110                       | ) 1                             | 108,25        | 111,75      | 100   | 75                |                   | 80                |               |         |         |                    |         |         |        |          |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120                       | ) 1                             | 118,25        | 121,75      |       | 75                |                   | 80                |               |         |         |                    |         |         |        |          |     |  |
| 130-400   1 -2 00   1 +2 00     75     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | in steps pf 10r                 |               | nm          |       |                   |                   |                   |               |         |         |                    |         |         |        |          |     |  |
| 150 700 18 2500 18 2500 10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130-4                     | $130-400$ $1_s-2,00$ $1_s+2,00$ |               |             |       | 75                |                   | 80                |               |         |         |                    |         |         |        |          |     |  |

- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

| tischer Power-Rast and Construction Screws | Annex A12 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

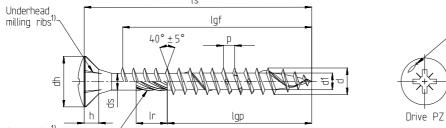
Page 26 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 26 / 41



Shank ribs<sup>1)</sup>optional

# Power-Fast self-drilling screw - Countersunk head with full- or partial thread

| Stainless steel   |                    |                  |                   |                                                                                                  |                   |            |                   |          |                   |          |                   |          |                   |              |    |          |
|-------------------|--------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|--------------|----|----------|
| No                | minal diam         | eter             | 3                 | ,0                                                                                               | 3                 | ,5         | 4.                | ,0       | 4.                | ,5       | 5.                | ,0       | 6                 | ,0           |    |          |
| ,                 | Outer diame        | eter             | 3,                | 00                                                                                               | 3,                | 50         | 4,                | 00       | 4,                | 50       | 5,                | 00       | 6,00              |              |    |          |
| d                 | Allow. devi        | ation            |                   |                                                                                                  |                   |            |                   | ±0       | ,30               |          |                   |          |                   |              |    | ,        |
| ı                 | Core diamet        | er               | 2,                | 00                                                                                               | 2,                | 20         | 2,                | 50       | 2,                | 70       | 3,                | 00       | 4,                | 00           |    |          |
| $\mathbf{d}_1$    | Allow. devi        | ation            |                   |                                                                                                  |                   | -0,25 /    | +0,10             |          |                   |          |                   | ±0       | ,20               |              |    |          |
| d <sub>h</sub>    | Head diame         |                  | 6,                | 00                                                                                               | 7,                | 00         |                   |          |                   |          |                   | ,00      | 12                | ,00          |    |          |
| u <sub>h</sub>    | Allow. devi        |                  |                   |                                                                                                  |                   |            |                   |          | '+0,10            |          |                   |          |                   |              |    |          |
| $d_{s}$           | Shank diam         |                  | 2,                | 25                                                                                               | 2,                | 60         | ,                 | 90       | ,                 | 25       | 3,60 4,30         |          |                   |              |    |          |
|                   | Allow. devi        |                  |                   |                                                                                                  |                   |            |                   |          | +0,10             |          |                   |          |                   |              |    |          |
| h                 | Head height        |                  |                   | 90                                                                                               |                   | 10         |                   | 50       |                   | 70       |                   | 00       |                   | 80           |    |          |
| p                 | Thread pitch       |                  | 1,                | 50                                                                                               | 1,                | 80         | 2,                | 00       |                   | 20       | 2,                | 50       | 3,00              | -4,50        |    |          |
| Р                 | Allow. devi        |                  |                   |                                                                                                  |                   |            |                   |          | 0%                |          |                   |          |                   |              |    |          |
| 1 <sub>r</sub> 1) | Shank rib le       |                  | 3,                | 75                                                                                               |                   | <u> 25</u> | 4,                | 75       | 5,                | 50       |                   | 00       | 7,                | 00           |    |          |
| <u> </u>          | Allow. devi        |                  |                   | 1                                                                                                |                   | ,75        | ı                 |          |                   |          |                   | ,00      | 1 2               | 0            |    |          |
|                   | Drive TX           |                  |                   |                                                                                                  | 0                 |            |                   |          | 0                 |          | 20   25   30   3  |          |                   |              |    |          |
|                   | Drive PZ           |                  |                   | 1                                                                                                |                   |            |                   |          |                   |          |                   |          |                   |              | 2) |          |
|                   | Screw length       | ı l <sub>s</sub> | Stand             | Standard thread length   $l_{gf}$ = Full- thread   $l_{gp}$ =Partial thread   Tolerance: $\pm 2$ |                   |            |                   |          |                   |          |                   |          |                   |              |    |          |
| Nomin             | mın                | max              | $l_{\mathrm{gf}}$ | $l_{gp}$                                                                                         | $l_{\mathrm{gf}}$ | $l_{gp}$   | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |    |          |
| lengt             | n                  |                  | Ŭ                 | -gp                                                                                              | Ŭ                 | -gp        |                   | -gp      |                   | -gp      | -gı               | -gp      | -gı               | -gp          |    | <u> </u> |
| 20                | 18,95              | 21,05            | 16                |                                                                                                  | 16                | 10         | 16                | 10       | 16                |          |                   |          |                   |              |    | -        |
| 25                | 23,75              | 26,25            | 21                | 1.0                                                                                              | 21                | 18         | 20                | 18       | 20                | 1.0      | 2.4               |          |                   |              |    |          |
| 30                | 28,75              | 31,25            | 26                | 18                                                                                               | 26                | 18         | 25                | 18       | 25                | 18       | 24                | 24       | 20                |              |    |          |
| 40                | 33,50<br>38,50     | 36,50<br>41,50   | 31                | 24<br>24                                                                                         | 31                | 24<br>24   | 30<br>35          | 24<br>24 | 30                | 24<br>24 | 29<br>34          | 24<br>24 | 28<br>33          | 24           |    |          |
| 45                | 43,50              | 46,50            | 41                | 30                                                                                               | 41                | 30         | 40                | 30       | 40                | 30       | 39                | 30       | 38                | 30           |    | 1        |
| 50                | 48,50              | 51,50            | 41                | 30                                                                                               | 46                | 30         | 45                | 30       | 45                | 30       | 44                | 30       | 43                | 30           |    | 1        |
| 55                | 53,50              | 56,50            |                   |                                                                                                  | 70                | 30         | 50                | 36       | 50                | 36       | 49                | 36       | 48                | 30           |    |          |
| 60                | 58,50              | 61,50            |                   |                                                                                                  |                   |            | 50                | 36       | 50                | 36       | コノ                | 36       | 53                | 36           |    |          |
| 70                | 68,50              | 71,50            |                   |                                                                                                  |                   |            |                   | 42       |                   | 42       |                   | 42       | 63                | 42           |    | 1        |
| 80                | 78,50              | 81,50            |                   |                                                                                                  |                   |            |                   | 50       |                   | 50       |                   | 50       | 73                | 50           |    |          |
| 90                | 88,25              | 91,75            |                   |                                                                                                  |                   |            |                   |          |                   |          |                   | 60       | , ,               | 60           |    |          |
| 100               | 98,25              | 101,75           |                   |                                                                                                  |                   |            |                   |          |                   |          |                   | 60       |                   | 60           |    |          |
| 110               |                    | 111,75           |                   |                                                                                                  |                   |            |                   |          |                   |          |                   | 70       |                   | 70           |    |          |
| 120               |                    | 121,75           |                   |                                                                                                  |                   |            |                   |          |                   |          |                   | 70       | İ                 | 70           |    |          |
| iı                | n steps of 10r     | nm               |                   |                                                                                                  |                   |            |                   |          |                   |          |                   |          |                   |              |    |          |
|                   | $l_{\rm s} - 2,00$ |                  |                   |                                                                                                  |                   |            |                   |          |                   |          |                   |          |                   | 70           |    |          |


All sizes in mm

- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \, \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq 30mm \, \triangleq \pm 1,\! 7mm \end{array}$ 

| tischer Power-Bast and Construction Screws | Annex A13 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 27 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 27 / 41



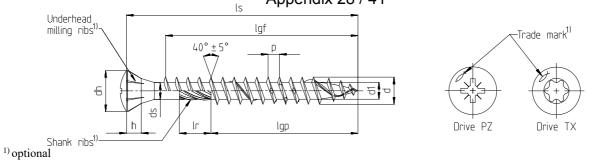
Shank ribs<sup>1).</sup>

optional

Power-Fast self-drilling screw - Raised countersunk head with full- or partial thread

| Stainless steel     Stainless steel |                                 |                   |                  |                   |                                                       |                   |          |                   |          |                      |          |                   |              |                   |              |                  |                                                  |
|-------------------------------------|---------------------------------|-------------------|------------------|-------------------|-------------------------------------------------------|-------------------|----------|-------------------|----------|----------------------|----------|-------------------|--------------|-------------------|--------------|------------------|--------------------------------------------------|
|                                     |                                 |                   |                  |                   |                                                       |                   |          |                   | 0        |                      |          | T -               | 0            |                   | •            |                  |                                                  |
| No                                  |                                 | nal dian          |                  |                   | ,0                                                    |                   | ,5       |                   | ,0       |                      | ,5       | 5,                |              |                   | ,0           |                  |                                                  |
| d                                   |                                 | uter diame        |                  | 3,                | 00                                                    | 3,                | 50       | 4,                | 00       | 4,                   | 50       | 5,0               | 00           | 6,                | 00           |                  |                                                  |
| ŭ                                   | A                               | llow. devi        | ation            |                   |                                                       |                   |          |                   | $\pm 0$  | ),30                 |          |                   |              |                   |              |                  |                                                  |
| $d_1$                               | Co                              | ore diame         | ter              | 2,                | 00                                                    | 2,                | 20       | 2,50              |          | 2,                   | 70       | 3,0               | 00           | 4,                | 00           |                  |                                                  |
| $\mathbf{u}_1$                      | Allow. deviation                |                   |                  |                   |                                                       |                   | -0,25    | +0,10             |          |                      |          |                   | $\pm 0$      | ,20               |              |                  |                                                  |
|                                     | Н                               | ead diame         | ter              | 6,                | 00                                                    | 7,                | 00       | 8,                | 00       | 9,                   | 00       | 10,               | ,00          | 12                | ,00          |                  |                                                  |
| $d_h$                               | d <sub>h</sub> Allow. deviation |                   |                  |                   |                                                       | ı                 |          |                   | -0,50    | /+0,10               |          | ı                 |              |                   |              |                  |                                                  |
|                                     | Sh                              | nank diam         | 2,               | 25                | 2,                                                    | 60                | 2,       | 90                | 3,       | 25                   | 3,0      | 60                | 4,           | 30                |              |                  |                                                  |
| $d_s$                               | A                               | llow. devi        | ation            |                   |                                                       |                   |          |                   |          | +0,10                |          |                   |              |                   |              |                  |                                                  |
| h                                   |                                 | ead height        |                  | 1.                | 90                                                    | 2                 | 10       |                   | 50       |                      | 70       | 3.0               | 00           | 3.                | 80           |                  |                                                  |
|                                     |                                 | read pitcl        |                  |                   | 50                                                    |                   | 80       |                   | 00       |                      | 20       | 2,                |              |                   | -4,50        |                  |                                                  |
| p                                   | p Allow. deviation              |                   | -,               |                   |                                                       |                   |          |                   | 0%       |                      |          |                   |              |                   |              |                  |                                                  |
|                                     |                                 | Shank ribs length |                  |                   | 75                                                    | 4                 | 25       | 4                 | 75       | 5,50                 |          | 6,00              |              | 7,00              |              |                  |                                                  |
| $l_r^{1)}$                          |                                 | Allow. deviation  |                  |                   | 13                                                    |                   | ,75      | т,                | 13       | ٠,٠                  |          |                   | ,00          | /,                | 00           |                  |                                                  |
|                                     |                                 | Drive TX          |                  |                   | 1                                                     | $\frac{\pm 0}{0}$ | ,73      |                   | 2        | 0                    |          | 20                | 25           | 2                 | 0            |                  |                                                  |
|                                     |                                 | Drive PZ          |                  |                   |                                                       | l I               |          |                   |          |                      |          | 20                | 23           |                   |              |                  |                                                  |
|                                     |                                 |                   | 1                |                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                   |          |                   |          |                      |          |                   |              |                   |              | 02)              |                                                  |
| NT '                                | _                               | rew length        | l I <sub>s</sub> | Stand             | dard th                                               | read le           | ength    | Igf= Fi           | all thre | ad   I <sub>gr</sub> | ,=Part   | ial thre          | ead   To     | oleran            | ce: ± 2      | ,0 <sup>2)</sup> | Т                                                |
| Nomir<br>lengt                      |                                 | min               | max              | $l_{\mathrm{gf}}$ | $l_{gp}$                                              | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$    | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |                  |                                                  |
| 20                                  |                                 | 18,95             | 21,05            | 16                |                                                       | 16                |          | 16                |          | 16                   |          |                   |              |                   |              |                  |                                                  |
| 25                                  |                                 | 23,75             | 26,25            | 21                |                                                       | 21                | 18       | 21                | 18       | 20                   |          |                   |              |                   |              |                  |                                                  |
| 30                                  |                                 | 28,75             | 31,25            | 26                | 18                                                    | 26                | 18       | 26                | 18       | 25                   | 18       | 24                |              | •                 |              |                  |                                                  |
| 35                                  |                                 | 33,50             | 36,50            | 31                | 24                                                    | 31                | 24       | 31                | 24       | 30                   | 24       | 29                | 24           | 28                |              |                  |                                                  |
| 40                                  |                                 | 38,50             | 41,50            |                   | 24                                                    | 36                | 24       | 36                | 24       | 35                   | 24       | 34                | 24           | 33                |              |                  | -                                                |
| 45<br>50                            |                                 | 43,50             | 46,50            |                   | 30                                                    |                   | 30       | 41                | 30       | 40                   | 30       | 39<br>44          | 30           | 38<br>43          |              |                  | 1                                                |
| 55                                  |                                 | 48,50<br>53,50    | 51,50<br>56,50   |                   |                                                       |                   | 30       | 40                | 36       | 43                   | 36       | 44                | 36           | 43                |              |                  | 1                                                |
| 60                                  |                                 | 58,50             | 61,50            |                   |                                                       |                   |          |                   | 36       |                      | 36       |                   | 36           | 53                |              |                  | <del>                                     </del> |
| 70                                  |                                 | 68,50             | 71,50            |                   |                                                       |                   |          |                   | 42       |                      | 42       |                   | 42           | 63                |              |                  | †                                                |
| 80                                  |                                 | 78,50             | 81,50            |                   |                                                       |                   |          |                   | 50       |                      | 50       |                   | 50           | 73                |              |                  | <b>†</b>                                         |

All sizes in mm


- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

 $\begin{array}{cc} ^{2)} & 10mm \geq l_g \leq \! 18mm \triangleq \pm 1,\! 5mm \\ & 18mm \geq l_g \leq 30mm \triangleq \pm 1,\! 7mm \end{array}$ 

-Trade mark<sup>1)</sup>

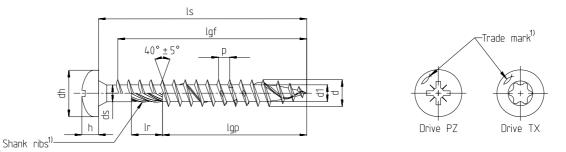
| tischer Power-Fast and Construction Screws | Annex A14 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 28 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 28 / 41



Power-Fast self-drilling screw – Facade screw with full- or partial thread

|                         | rower-        | Fast sell        | -urn                   | inig s       | crew              | – гас             | caue              | screw        | WILL    | ı ıuıı- | or pa    | ırtıa  | ı tiire | au      |           |  |
|-------------------------|---------------|------------------|------------------------|--------------|-------------------|-------------------|-------------------|--------------|---------|---------|----------|--------|---------|---------|-----------|--|
| <ul><li>Stain</li></ul> | less steel    |                  |                        |              |                   |                   |                   |              |         |         |          |        |         |         |           |  |
| Nom                     | inal dian     | neter            | 4                      | ,0           | 4                 | ,5                | 5                 | ,0           |         |         |          |        |         |         |           |  |
| , C                     | uter diam     | eter             | 4,                     | 4,00 4,50    |                   | 5,00              |                   |              |         |         |          |        |         |         |           |  |
| $\frac{d}{A}$           | llow. devi    | iation           | ±0,30                  |              |                   | ,30               |                   |              |         |         |          |        |         |         |           |  |
| . C                     | Core diameter |                  | 2,50                   |              |                   | 2,70              |                   | 3,00         |         |         |          |        |         |         |           |  |
| $d_1$                   | llow. devi    | iation           |                        | -0,25 /      |                   |                   |                   | ,20          |         |         |          |        |         |         |           |  |
|                         | lead diame    |                  | 6.                     | 6,90         |                   | 90                |                   | 80           |         |         |          |        |         |         |           |  |
| dı —                    | llow. devi    |                  | ,                      | ,, ,         | ,                 | ,50               | , ,               |              |         |         |          |        |         |         |           |  |
|                         | hank diam     |                  | 2                      | .90          |                   | 25                | 3                 | 60           |         |         |          |        |         |         |           |  |
| d —                     | llow. devi    |                  | ۷,                     |              |                   | '+0,10            |                   | 00           |         |         |          |        |         |         |           |  |
|                         | lead heigh    |                  | 2                      | 50           |                   | 70                |                   | 00           |         |         |          |        | 1       |         |           |  |
|                         |               |                  |                        |              |                   |                   |                   |              |         |         |          |        |         |         |           |  |
| n                       | hread pitc    |                  | Ζ,                     | ,00          |                   | 20                | ۷,                | 50           |         |         |          |        | -       |         |           |  |
|                         | llow. devi    |                  |                        |              |                   | 0%                |                   | 0.0          |         |         |          |        |         |         |           |  |
| 1)                      |               | nank ribs length |                        | ,75          | 5,                | 50                |                   | 00           |         |         |          |        | 1       |         |           |  |
| A                       | llow. devi    |                  | ±0                     | ),75         |                   | ±1                | ,00               |              |         |         |          |        |         |         |           |  |
| Drive TX                |               |                  |                        | 2            |                   |                   | 20                | 25           |         |         |          |        |         |         |           |  |
|                         | Drive PZ      |                  |                        |              | 2                 | 2                 |                   |              |         |         |          |        |         |         |           |  |
| Sc                      | rew lengtl    | ı l <sub>s</sub> | Standard thread length |              |                   |                   | $l_{gf} = F_1$    | ull thre     | ad   lg | =Part   | ial thre | ad   T | oleran  | ce: ± 2 | $,0^{2)}$ |  |
| Nominal length          | min           | max              | $l_{\mathrm{gf}}$      | $l_{\rm gp}$ | $l_{\mathrm{gf}}$ | $l_{\mathrm{gp}}$ | $l_{\mathrm{gf}}$ | $l_{\rm gp}$ |         |         |          |        |         |         |           |  |
| 20                      | 18,95         | 21,05            | 16                     |              | 16                |                   |                   |              |         |         |          |        |         |         |           |  |
| 25                      | 23,75         | 26,25            | 21                     | 18           | 20                |                   |                   |              |         |         |          |        |         |         |           |  |
| 30                      | 28,75         | 31,25            | 26                     | 18           | 25                | 18                | 24                |              |         |         |          |        |         |         |           |  |
| 35                      | 33,50         | 36,50            | 31                     | 24           | 30                | 24                | 29                | 24           |         |         |          |        |         |         |           |  |
| 40                      | 38,50         | 41,50            | 36                     | 24           | 35                | 24                | 34                | 24           |         |         |          |        |         |         |           |  |
| 45                      | 43,50         | 46,50            | 41                     | 30           | 40                | 30                | 39                | 30           |         |         |          |        |         |         |           |  |
| 50                      | 48,50         | 51,50            | 46                     | 30           | 45                | 30                | 44                | 30           |         |         |          |        |         |         |           |  |
| 55                      | 53,50         | 56,50            |                        | 36           |                   | 36                |                   | 36           |         |         |          |        |         |         |           |  |
| 60                      | 58,50         | 61,50            |                        | 36           |                   | 36                |                   | 36           |         |         |          |        |         |         |           |  |
| 70                      | 68,50         | 71,50            |                        | 42           |                   | 42                |                   | 42           |         |         |          |        |         |         |           |  |
| 80                      | 78,50         | 81,50            |                        | 50           |                   | 50                |                   | 50           |         |         |          |        |         |         |           |  |
| 90                      | 88,25         | 91,75            |                        |              |                   |                   |                   | 60           |         |         |          |        |         |         |           |  |
| 100                     | 98,25         | 101,75           |                        |              |                   |                   |                   | 60           |         |         |          |        |         |         |           |  |
| 110                     | 108,25        | 111,75           |                        |              |                   |                   |                   | 70           |         |         |          |        |         |         |           |  |
| 120                     | 118,25        | 121,75           |                        |              |                   |                   |                   | 70           |         |         |          |        |         |         |           |  |


All sizes in mm

- Intermediate lengths at ls are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \, \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq 30mm \, \triangleq \pm 1,\! 7mm \end{array}$ 

| fischer Power-Fast and Construction Screws | Annex A15 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

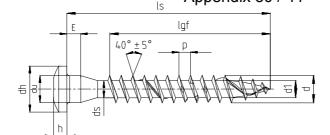
# Page 29 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 29 / 41

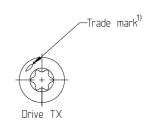


1) optional

Power-Fast self-drilling screw - Pan head with full- or partial thread

|                           | 1000              | r-rast s         | cii di            | 11111118                                                                                         | sere              | W - I     | an ne             | au w       | itii iu           | 111- 01  | part              | iai tii  | ıı cau            |           |  |                                                  |
|---------------------------|-------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------|-------------------|-----------|-------------------|------------|-------------------|----------|-------------------|----------|-------------------|-----------|--|--------------------------------------------------|
| ■ St                      | ainless steel     |                  |                   |                                                                                                  |                   |           |                   |            |                   |          |                   |          |                   |           |  |                                                  |
| No                        | ominal diar       | neter            | 3                 | ,0                                                                                               | 3                 | ,5        | 4                 | ,0         | 4.                | ,5       | 5                 | ,0       | 6                 | ,0        |  |                                                  |
| d                         | Outer diam        | eter             | 3,                | 00                                                                                               | 3,                | 50        | 4,                | 00         | 4,                | 50       | 5,                | 00       | 6,                | 00        |  |                                                  |
| u                         | Allow. dev        |                  |                   |                                                                                                  |                   |           |                   | ±0         | ,30               |          |                   |          |                   |           |  |                                                  |
| $d_1$                     | Core diame        |                  | 2,00 2,20         |                                                                                                  | 20                | 2,50 2,70 |                   |            | 3,00              |          | 4,                | 4,00     |                   |           |  |                                                  |
| uı                        | Allow. deviation  |                  |                   |                                                                                                  |                   |           | +0,10             |            |                   |          |                   |          | ,20               |           |  |                                                  |
| $d_{\rm h}$               | Head diam         | eter             | 6,                | 00                                                                                               | 7,                | 00        |                   | 00         |                   | 00       | 10                | ,00      | 12                | ,00       |  |                                                  |
| $\mathbf{u}_{\mathrm{h}}$ | Allow. dev        | iation           |                   |                                                                                                  |                   |           |                   | -0,50 /    | '+0,10            | )        |                   |          |                   |           |  |                                                  |
| $d_{\rm s}$               | Shank dian        | neter            | 2,                | 25                                                                                               | 2,                | 60        | 2,                | 90         | 3,                | 25       | 3,                | 60       | 4,                | 30        |  |                                                  |
| $\mathbf{u}_{\mathrm{s}}$ | Allow. dev        | iation           |                   |                                                                                                  |                   |           |                   | -0,30 /    | '+0,10            | )        |                   |          |                   |           |  |                                                  |
| h                         | Head heigh        | t                | 2,                | 30                                                                                               | 2,                | 50        | 2,                | 90         | 3,                | 10       | 3,                | 40       | 3,                | 80        |  |                                                  |
| n                         | Thread pitc       |                  | 1,                | 50                                                                                               | 1,                | 80        | 2,                | 00         | 2,                | 20       | 2,                | 50       | 3,00              | -4,50     |  |                                                  |
| р                         | Allow. dev        | iation           |                   |                                                                                                  |                   |           |                   | ±10        | 0%                |          |                   |          |                   |           |  |                                                  |
| $l_{r}^{1)}$              | Shank ribs length |                  | 3,                | 75                                                                                               | 4,25              |           | 4,                | 75 5,50    |                   | 6,00     |                   | 7,00     |                   |           |  |                                                  |
| ır                        | Allow. deviation  |                  |                   |                                                                                                  | ±0                | ,75       |                   |            |                   |          | ±1                | ,00      |                   |           |  |                                                  |
|                           | Drive TX          |                  |                   | 1                                                                                                | 0                 |           |                   | 2          | 0                 |          | 20                | 25       | 3                 | 0         |  |                                                  |
|                           | Drive PZ          |                  |                   | 1 2 3                                                                                            |                   |           |                   |            |                   |          |                   | 3        |                   | ĺ         |  |                                                  |
|                           | Screw lengt       | h l <sub>s</sub> | Stan              | Standard thread length   $l_{gf}$ = Full thread   $l_{gp}$ =Partial thread   Tolerance: $\pm$ 2, |                   |           |                   |            |                   |          |                   |          |                   | $,0^{2)}$ |  |                                                  |
| Nomi                      | mın               | max              | $l_{\mathrm{gf}}$ | $l_{gp}$                                                                                         | $l_{\mathrm{gf}}$ | $l_{gp}$  | $l_{\mathrm{gf}}$ | $l_{gp}$   | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$  |  |                                                  |
| leng<br>20                | 18,95             | 21,05            | 16                | 01                                                                                               | 16                |           | 16                | <i>S</i> 1 | -                 | - 51     |                   | 01       |                   | 01        |  |                                                  |
| 25                        | 23,75             | 26,25            | 21                |                                                                                                  | 21                | 18        | 20                | 18         | 20                |          |                   |          |                   |           |  |                                                  |
| 30                        | 28,75             | 31,25            | 26                | 18                                                                                               | 26                | 18        | 25                | 18         | 25                | 18       | 24                |          |                   |           |  |                                                  |
| 35                        | 33,50             | 36,50            | 31                | 24                                                                                               | 31                | 24        | 30                | 24         | 30                | 24       | 29                | 24       | 28                |           |  |                                                  |
| 40                        | 38,50             | 41,50            |                   | 24                                                                                               | 36                | 24        | 35                | 24         | 35                | 24       | 34                | 24       | 33                | 24        |  |                                                  |
| 45                        | 43,50             | 46,50            |                   | 30                                                                                               |                   | 30        | 40                | 30         | 40                | 30       | 39                | 30       | 38                | 30        |  |                                                  |
| 50                        | 48,50             | 51,50            |                   |                                                                                                  |                   | 30        | 45                | 30         | 45                | 30       | 44                | 36       | 43                | 30        |  |                                                  |
| 55                        | 53,50             | 56,50            |                   |                                                                                                  |                   |           | 50                | 36         | 50                | 36       | 49                | 36       | 48                |           |  |                                                  |
| 60                        | 58,50             | 61,50            |                   |                                                                                                  |                   |           |                   | 36         |                   | 36       |                   | 42       | 53                | 36        |  |                                                  |
| 70                        | 68,50             | 71,50            |                   |                                                                                                  |                   |           |                   | 42         |                   | 42       |                   | 50       | 63                | 42        |  |                                                  |
| 80                        | 78,50             | 81,50            |                   |                                                                                                  |                   |           |                   | 50         |                   | 50       |                   | 50       | 73                | 50        |  |                                                  |
| 90                        | 88,25             | 91,75            |                   |                                                                                                  |                   |           |                   |            |                   |          |                   | 60       |                   | 60        |  | <del>                                     </del> |
| 100                       | 98,25             | 101,75           |                   |                                                                                                  |                   |           |                   |            |                   |          |                   | 60       |                   | 60        |  |                                                  |


All sizes in mm


- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

 $\begin{array}{cc} ^{2)} & 10mm \geq l_g \leq \! 18mm \triangleq \pm 1,\! 5mm \\ & 18mm \geq l_g \leq \! 30mm \triangleq \pm 1,\! 7mm \end{array}$ 

| fischer Power-Fast and Construction Screws | Annex A16 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

# Page 30 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 30 / 41

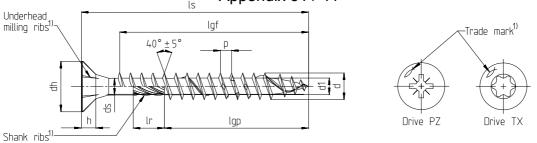




 $^{1)}$  optional

Power-Fast self-drilling screw - Wood connector screw with full thread

| ■ Ct.          | Stainless steel  Stainless steel |                   |                   |          |         |       |              |         |                |         |         |         |        |         |            |  |
|----------------|----------------------------------|-------------------|-------------------|----------|---------|-------|--------------|---------|----------------|---------|---------|---------|--------|---------|------------|--|
|                |                                  |                   |                   |          | ı       |       |              |         |                |         |         |         |        |         |            |  |
| No             | ominal dia                       |                   | 5,                | ,0       |         |       |              |         |                |         |         |         |        |         |            |  |
| d              | Outer dian                       | neter             | 5,                | 00       |         |       |              |         |                |         |         |         |        |         |            |  |
| u              | Allow. dev                       |                   | -0,               | ,30      |         |       |              |         |                |         |         |         |        |         |            |  |
| $d_1$          | Core diameter                    |                   |                   | 3,00     |         |       |              |         |                |         |         |         |        |         |            |  |
| uı             | Allow. dev                       |                   | ±0,               | ,20      |         |       |              |         |                |         |         |         |        |         |            |  |
| $d_n$          | Underhead                        |                   |                   | 00       |         |       |              |         |                |         |         |         |        |         |            |  |
| G <sub>U</sub> | Allow. dev                       |                   |                   | ,35      |         |       |              |         |                |         |         |         |        |         |            |  |
| $d_{\rm h}$    | Head diam                        |                   |                   | 25       |         |       |              |         |                |         |         |         |        |         |            |  |
| u <sub>n</sub> | Allow. dev                       | riation           |                   | ,40      |         |       |              |         |                |         |         |         |        |         |            |  |
| Е              | Height                           |                   |                   | 50       |         |       |              |         |                |         |         |         |        |         |            |  |
|                | Allow. dev                       |                   |                   | ,30      |         |       |              |         |                |         |         |         |        |         |            |  |
| h              | Head heigh                       |                   |                   | 60       |         |       |              |         |                |         |         |         |        |         |            |  |
| р              | Thread pitch                     |                   |                   | 50       |         |       |              |         |                |         |         |         |        |         |            |  |
| Р              | Allow. deviation                 |                   |                   | 0%       |         |       |              |         |                |         |         |         |        |         |            |  |
|                | Drive TX                         | <u> </u>          | 20                | 25       |         |       |              |         |                |         |         |         |        |         |            |  |
|                | Screw length                     | th l <sub>s</sub> | Stand             | dard th  | read le | ength | $l_{gf} = F$ | ull thr | ead $  l_{gl}$ | p =Part | ial thr | ead   T | oleran | ce: ± 2 | $1,0^{2)}$ |  |
| Nomin<br>lengt | mın                              | max               | $l_{\mathrm{gf}}$ | $l_{gp}$ |         |       |              |         |                |         |         |         |        |         |            |  |
| 20             | 18,95                            | 21,05             | 14                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 25             | 23,75                            | 26,25             | 19                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 30             | 28,75                            | 31,25             | 24                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 35             | 33,50                            | 36,50             | 29                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 40             | 38,50                            | 41,50             | 34                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 45             | 43,50                            | 46,50             | 39                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 50             | 48,50                            | 51,50             | 44                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 55             | 53,50                            | 56,50             | 49                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 60             | 58,50                            | 61,50             | 54                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 70             | 68,50                            | 71,50             | 64                |          |         |       |              |         |                |         |         |         |        |         |            |  |
| 80             | 78,50                            | 81,50             | 74                |          |         |       |              |         |                |         |         |         |        |         |            |  |


All sizes in mm

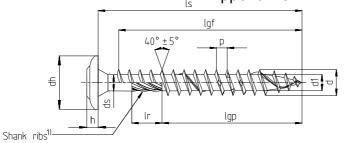
- Intermediate lengths at l<sub>s</sub> are possible
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

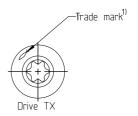
 $\begin{array}{c} ^{2)} \ 10mm \geq l_g \leq \! 18mm \triangleq \pm 1,\! 5mm \\ 18mm \geq l_g \leq \! 30mm \triangleq \pm 1,\! 7mm \end{array}$ 

| fischer Power-Fast and Construction Screws | Annex A17 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 31 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 31 / 41




Power-Fast wood construction screw - Countersunk head with full- or partial thread


| ■ Stainl                                                                       | ess steel               |                  |                   |          |                   |          |                    |          |          |        |        |         |        |          |     |          |
|--------------------------------------------------------------------------------|-------------------------|------------------|-------------------|----------|-------------------|----------|--------------------|----------|----------|--------|--------|---------|--------|----------|-----|----------|
| Nomi                                                                           | nal diam                | eter             | 6                 | ,0       | 8                 | ,0       |                    |          |          |        |        |         |        |          |     |          |
| d C                                                                            | Outer diam              | eter             | 6,                | 00       | 8,00              |          |                    |          |          |        |        |         |        |          |     |          |
| a A                                                                            | Allow. dev              | iation           |                   | ±0,30    |                   |          |                    |          |          |        |        |         |        |          |     |          |
| d <sub>1</sub>                                                                 | Core diameter 4,00 5,40 |                  |                   |          |                   |          |                    |          |          |        |        |         |        |          |     |          |
| $a_1$                                                                          | Allow. dev              | iation           |                   | $\pm 0$  | ,20               |          |                    |          |          |        |        |         |        |          |     |          |
| <sub>d</sub> F                                                                 | Iead diam               | eter             | 12                | ,00      | 14                | ,40      |                    |          |          |        |        |         |        |          |     |          |
| $d_h = \frac{1}{A}$                                                            | Allow. dev              | iation           | -0,50             | +0,10    | ±0                | ,40      |                    |          |          |        |        |         |        |          |     |          |
| 4                                                                              | hank dian               |                  | 4,                | 30       | 5,                | 90       |                    |          |          |        |        |         |        |          |     |          |
| $u_s$                                                                          | Allow. dev              | iation           | -0,30             | /+0,10   | ±0                | ,20      |                    |          |          |        |        |         |        |          |     |          |
|                                                                                | Iead heigh              |                  | ,                 | 80       | ,                 | 10       |                    |          |          |        |        |         |        |          |     |          |
|                                                                                | hread pito              |                  | 3,00-             | -        | ,                 | 00       |                    |          |          |        |        |         |        |          |     |          |
|                                                                                | Allow. dev              |                  |                   | ±1       |                   |          |                    |          |          |        |        |         |        |          |     |          |
|                                                                                | hank rib l              |                  | 7,                | 00       |                   | ,00      |                    |          |          |        |        |         |        |          |     |          |
| Allow. deviation                                                               |                         |                  | ,00               |          | ,00               |          |                    |          |          |        |        |         |        |          |     |          |
| Drive TX                                                                       |                         |                  | 0                 | 4        | 10                |          |                    |          |          |        |        |         |        |          |     |          |
|                                                                                | Drive PZ                |                  |                   | 3        |                   | -        |                    |          |          |        |        |         |        |          |     |          |
| Sc                                                                             | rew length              | ı l <sub>s</sub> | Stan              | dard th  | read le           | ength    | $l_{\rm gf} = F_1$ | ull thre | ead   lg | ,=Part | al thr | ead   T | oleran | ice: ± 2 | 2,0 |          |
| Nominal                                                                        | min                     | max              | $l_{\mathrm{gf}}$ | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$ |                    |          |          |        |        |         |        |          |     |          |
| length                                                                         |                         |                  | - T               | 0.       | -gı               | -gp      |                    |          |          |        |        |         |        |          |     |          |
| 60                                                                             | 58,50                   | 61,50            | 50                | 36       |                   |          |                    |          |          |        |        |         |        |          |     |          |
| 80                                                                             | 78,50                   | 81,50            | 70                | 50       | 70                | 50       |                    |          |          |        |        |         |        | -        |     |          |
| 90                                                                             | 88,25                   | 91,75            |                   | 60       | 80                | 50       |                    |          |          |        |        |         |        | -        |     |          |
| 100                                                                            | 98,25                   | 101,75           |                   | 60       | 80                | 50       |                    |          |          |        |        |         |        |          |     |          |
| 120                                                                            | 118,25                  | 121,75           |                   | 70       | 100               | 75       |                    |          |          |        |        |         |        | 1        |     |          |
| 140                                                                            | 138,00                  | 142,00           |                   | 70       |                   | 75       |                    |          |          |        |        |         |        | 1        |     |          |
| 160                                                                            | 158,00                  | 162,00           |                   | 70       |                   | 75       |                    |          |          |        |        |         |        | 1        |     |          |
| 180                                                                            | 178,00                  | 182,00           |                   | 70       |                   | 75       |                    |          |          |        |        |         |        | -        |     | -        |
| in steps of 20mm $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$        |                         | 100              |                   |          |                   |          |                    |          |          | -      |        | -       |        |          |     |          |
| $\frac{100-300 \mid l_s - 2,00 \mid l_s + 2,00 \mid}{\text{in steps of 20mm}}$ |                         | /0               |                   | 100      |                   |          |                    |          |          |        |        | -       |        | -        |     |          |
|                                                                                | $l_s = 3,00$            |                  |                   |          |                   | 100      |                    |          |          |        |        |         |        | +        |     | +        |
| ZU-JUU                                                                         | $1_{s} - 3,00$          | $I_s \pm 3,00$   |                   |          |                   | 100      |                    |          |          |        |        |         |        |          |     | <u> </u> |

- Intermediate lengths at l<sub>s</sub> are possible
- Screws with partial thread > 50 mm length with shank ribs
- Threaded lengths between  $4 \times d \le l_g \le l_{gmax}$  are possible

| fischer Power-Fast and Construction Screws | Annex A18 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 32 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 32 / 41





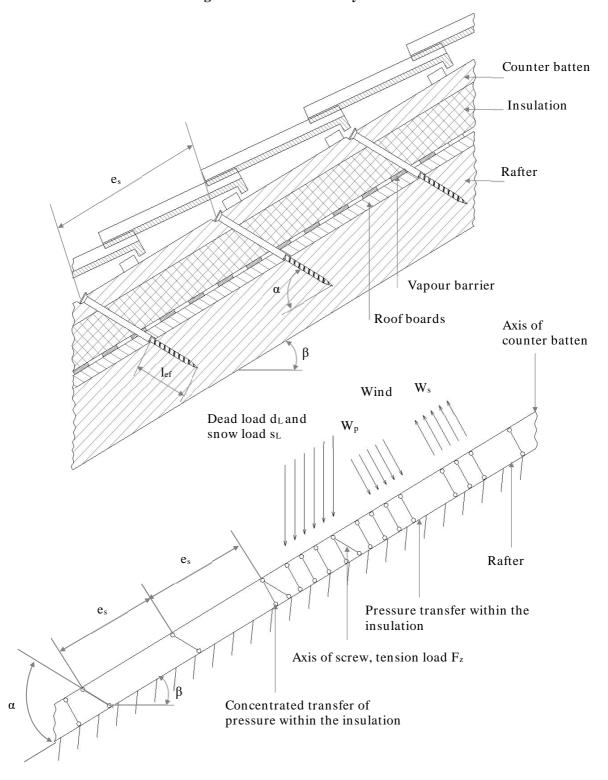
# Power-Fast wood construction screw - Flange head with full- or partial thread

|         | 1 over-rast wood construction serew - Frange nead with run- of partial thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                        |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|----------|-------------------|----------------|----------|----------|--------------------|----------|---------|--------|---------|-----|----------|--|
| ■ Stain | less steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                        |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
| Nor     | ninal dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | meter            | 6                      | ,0       | 8                 | ,0             |          |          |                    |          |         |        |         |     |          |  |
| d       | Outer diam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eter             | 6,                     | 00       | 8,                | 00             |          |          |                    |          |         |        |         |     |          |  |
| a A     | Allow. dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iation           |                        | $\pm 0$  |                   |                |          |          |                    |          |         |        |         |     |          |  |
| d       | Core diameter 4,00 5,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
| 1       | Allow. dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                        | -0,30/   |                   |                |          |          |                    |          |         |        |         |     |          |  |
| d,      | Head diam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                        | ,70      |                   | ,00            |          |          |                    |          |         |        |         |     |          |  |
| 1       | Allow. dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                        | +1,30    |                   | ,00            |          |          |                    |          |         |        |         |     |          |  |
| _       | Shank dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 4,                     | 30       |                   | 90             |          |          |                    |          |         |        |         |     |          |  |
| - 1     | Allow. dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                        |          | +0,10             |                |          |          |                    |          |         |        |         |     |          |  |
| h —     | Head heigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                        | 3,       |                   |                |          |          |                    |          |         |        |         |     |          |  |
| 1       | Allow. dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                        |          | ,00               |                |          |          |                    |          |         |        |         |     |          |  |
| 10      | Thread pite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 3,00                   | -4,50    | 6,00              |                |          |          |                    |          |         |        |         |     |          |  |
| 1       | Allow. deviation ±10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                        |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
| 11)     | Shank rib length         8,00         13,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                        |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
| 1 1     | Allow. deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                        | -2,      |                   |                |          |          |                    |          |         |        |         |     |          |  |
|         | Drive TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                        | 0        |                   | 0              |          |          |                    |          |         |        |         |     | <u> </u> |  |
|         | crew length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı l <sub>s</sub> | Standard thread length |          |                   | $l_{gf} = F_1$ | all thre | ead   lg | <sub>p</sub> =Part | ial thre | ead   T | oleran | ce: ± 2 | .,0 |          |  |
| Nominal | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | max              | $l_{gf}$               | $l_{gp}$ | $l_{\mathrm{gf}}$ | $l_{gp}$       |          |          |                    |          |         |        |         |     |          |  |
| length  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |          | -gı               | -gp            |          |          |                    |          |         |        |         |     |          |  |
| 60      | 58,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61,50            | 50                     | 36       |                   |                |          |          |                    |          |         |        |         |     |          |  |
| 80      | 78,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81,50            | 70                     | 50       | 70                | 50             |          |          |                    |          |         |        |         |     |          |  |
| 90      | 88,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91,75            |                        | 60       | 80                | 50             |          |          |                    |          |         |        |         |     |          |  |
| 100     | 98,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101,75           |                        | 60       | 80                | 50             |          |          |                    |          |         |        |         |     |          |  |
| 120     | 118,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121,75           |                        | 70       | 100               | 75             |          |          |                    |          |         |        |         |     |          |  |
| 140     | 138,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142,00           |                        | 70       |                   | 75             |          |          |                    |          |         |        |         |     |          |  |
| 160     | 158,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 162,00           |                        | 70       |                   | 75             |          |          |                    |          |         |        |         |     |          |  |
| 180     | 178,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 182,00           |                        | 70       |                   | 75             |          |          |                    |          |         |        |         |     |          |  |
|         | in steps of 20mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 100                    |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
|         | $\frac{100-300}{100-300} = \frac{1}{100} = \frac{100}{100} = \frac{100}{1$ |                  | 100                    |          |                   |                |          |          |                    |          |         |        |         |     |          |  |
|         | in steps of 20mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                        |          | 100               |                |          |          |                    |          |         |        |         | -   |          |  |
| 320-300 | $320-500 \mid l_s -3,00 \mid l_s +3,00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |          |                   | 100            |          |          |                    |          |         |        |         |     |          |  |

- Intermediate lengths at l<sub>s</sub> are possible
- $\blacksquare \qquad \text{Threaded lengths between } 4\dot{\times}d \leq l_g \leq l_{gmax} \text{ are possible}$

| fischer Power-Fast and Construction Screws | Annex A19 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Sizes and Material                         | ETA-11/0027                                |

Page 33 of 41 of European Technical Assessment no. ETA-11/0027, issued on 2019-01-02 Appendix 33 / 41



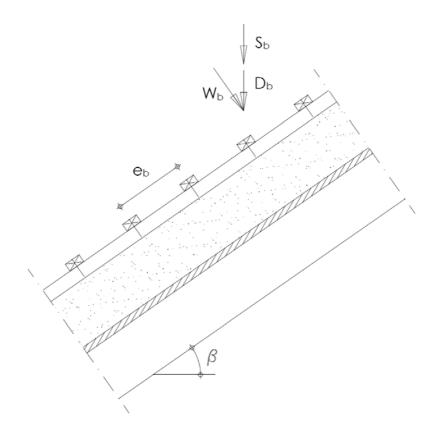

# Washer for Power-Fast and construction screws

|     | <ul> <li>Carbon Steel - possible surface treatments: yellow or blue zinc-plated, bonus- zinced, ≥12μm blue zinc-plated</li> <li>Stainless steel</li> </ul> |      |      |       |       |        |       |       |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|-------|--------|-------|-------|--|
| N   | lominal diameter                                                                                                                                           |      | Tyj  | pe 1  |       | Type 2 |       |       |  |
|     | Size                                                                                                                                                       | 6    | 8    | 10    | 12    | 6      | 8     | 10    |  |
| J1. | Inner diameter                                                                                                                                             | 6,70 | 8,70 | 11,20 | 6,70  | 6,70   | 8,70  | 11,20 |  |
| db  | Allow. deviation                                                                                                                                           |      |      |       |       |        |       |       |  |
| 1.  | Outer diameter                                                                                                                                             | 21   | 30   | 35    | 43    | 21     | 25,50 | 30,50 |  |
| da  | Allow. deviation                                                                                                                                           |      |      |       | ±2,0  |        |       |       |  |
| 1.  | Height                                                                                                                                                     | 4,70 | 5,20 | 6,20  | 8,30  | 4,70   | 5,20  | 6,20  |  |
| b   | Allow. deviation                                                                                                                                           |      |      |       | -0,40 |        |       |       |  |
| 1.  | Height                                                                                                                                                     | 1,50 | 1,80 | 2,00  | 2,20  | 1,50   | 1,80  | 2,00  |  |
| h   | Allow. deviation                                                                                                                                           |      |      |       | -0,15 |        |       |       |  |

| tischer Power-Hast and Construction Screws | Annex A20 of European Technical Assessment |
|--------------------------------------------|--------------------------------------------|
| Accessories                                | ETA-11/0027                                |

# Appendix 34 / 41 Annex B1 Fixing of on-roof insulation system




 $W_S = Wind suction W_P = Wind pressure$ 

 $e_s$  = Spacing of screws  $l_{ef}$  = Thread part part of screw in rafter

 $\beta$  = Roof inclination  $\alpha$  = Angle between axis of screw and axis of rafter

| fischer Power-Bast and Construction Screws | Annex B1 of European Technical Assessment |  |  |
|--------------------------------------------|-------------------------------------------|--|--|
| Accessories                                | ETA-11/0027                               |  |  |

# 



$$\begin{split} D_b &= d \cdot e_b \cdot e_r \\ S_b &= s \cdot e_b \cdot e_r \cdot \cos \beta \\ W_b &= w_p \cdot e_b \cdot e_r \\ F_b &= W_b + (D_b + S_b) \cdot \cos \beta \end{split}$$

where

 $D_b = point load by dead load$ 

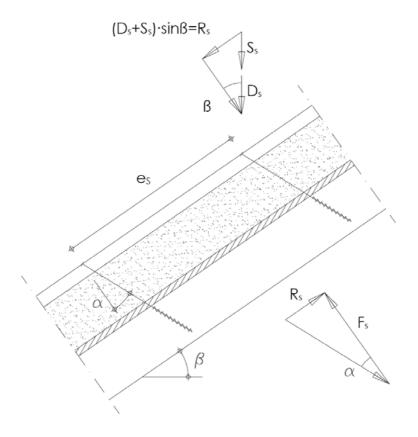
 $S_b = point load by snow load$ 

W<sub>b</sub> = point load perpendicular to the batten by wind load (pressure)

 $e_b = distance$  of the battens

 $e_r$  = distance of the rafters

 $s = snow \ load \ per \ m^2 \ ground \ area$ 


 $w_p$  = wind pressure on the roof area

 $d = dead load per m^2 roof area$ 

 $\beta$  = roof angle

| tischer Power-Bast and Construction Screws | Annex B2 of European Technical Assessment |  |  |
|--------------------------------------------|-------------------------------------------|--|--|
| Accessories                                | ETA-11/0027                               |  |  |

# Point loads $F_s$ perpendicular to the battens by screws



$$D_s\!=d\cdot e_s\cdot e_r$$

$$S_s = s \cdot e_s \cdot e_r \cdot \cos \beta$$

$$R_s = (D_s + S_s) \cdot \sin \beta$$

$$F_s\!=R_s\,/\,tan~\alpha$$

#### where

 $D_s$  = point load by dead load

 $S_s = point load by snow load$ 

 $R_s$  = shear load of the roof by dead load and snow load

 $e_s$  = distance of the screws

 $e_r$  = distance of the rafters

 $\alpha$  = angle between screw axis and perpendicular to rafter axis

| tischer Power-Rast and Construction Screws | Annex B2 of European Technical Assessment |  |  |
|--------------------------------------------|-------------------------------------------|--|--|
| Accessories                                | ETA-11/0027                               |  |  |

# Appendix 37 / 41

### Design of the battens

The bending stresses are calculated as:

$$M = \frac{\left(F_b + F_s\right) \cdot \ell_{char}}{4}$$

Where

 $\ell_{char} = characteristic length \ \ell_{char} = \sqrt[4]{\frac{4 \cdot EI}{w_{ef} \cdot K}}$ 

EI = bending stiffness of the batten

K = coefficient of subgrade

w<sub>ef</sub>= effective width of the heat insulation

 $F_b$  = Point loads perpendicular to the battens

 $F_s$  = Point loads perpendicular to the battens, load application in the area of the screw heads

The coefficient of subgrade K may be calculated from the modulus of elasticity  $E_{HI}$  and the thickness  $t_{HI}$  of the heat insulation if the effective width  $w_{ef}$  of the heat insulation under compression is known. Due to the load extension in the heat insulation the effective width  $w_{ef}$  is greater than the width of the batten or rafter, respectively. For further calculations, the effective width  $w_{ef}$  of the heat insulation may be determined according to:

$$w_{ef} = w + t_{HI} / 2$$

where

w = minimum width of the batten or rafter, respectively

t<sub>HI</sub> = thickness of the heat insulation

$$K = \frac{E_{HI}}{t_{HI}}$$

The following condition shall be satisfied:

$$\frac{\sigma_{m,d}}{f_{m,d}} = \frac{M_d}{W \cdot f_{m,d}} \leq 1$$

For the calculation of the section modulus W the net cross section has to be considered.

The shear stresses shall be calculated according to:

$$V = \frac{(F_b + F_s)}{2}$$

The following condition shall be satisfied:

$$\frac{\tau_d}{f_{v,d}} = \frac{1,5 \cdot V_d}{A \cdot f_{v,d}} \le 1$$

For the calculation of the cross section area the net cross section has to be considered.

#### **Design of the heat insulation**

The compressive stresses in the heat insulation shall be calculated according to:

$$\sigma = \frac{1.5 \cdot F_b + F_s}{2 \cdot \ell_{char} \cdot w}$$

The design value of the compressive stress shall not be greater than 110 % of the compressive stress at 10 % deformation calculated according to EN 826.

| fischer Power-Fast and Construction Screws | Annex B2 of European Technical Assessment |  |  |
|--------------------------------------------|-------------------------------------------|--|--|
| Accessories                                | ETA-11/0027                               |  |  |

# Appendix 38 / 41

# Design of the screws

The screws are loaded predominantly axially. The axial tension force in the screw may be calculated from the shear loads of the roof R<sub>s</sub>:

$$T_S = \frac{R_S}{\cos \alpha}$$

The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw.

In order to limit the deformation of the screw head for heat insulation thicknesses over 200 mm or with compressive strength below  $0.12 \text{ N/mm}^2$ , respectively, the axial withdrawal capacity of the screws shall be reduced by the factors  $k_1$  and  $k_2$ :

$$\begin{aligned} F_{\text{ax},\alpha,\text{Rd}} = \text{min} \begin{cases} k_{\text{ax}} \cdot f_{\text{ax},\text{d}} \cdot \text{d} \cdot \ell_{\text{ef}} \cdot k_{_{1}} \cdot k_{_{2}} \bigg(\frac{\rho_{_{k}}}{350}\bigg)^{^{0,8}} \\ \\ f_{\text{head},\text{d}} \cdot d_{_{h}}^{^{2}} \cdot \bigg(\frac{\rho_{_{k}}}{350}\bigg)^{^{0,8}} \end{cases} \end{aligned}$$

where:

f<sub>ax,d</sub> design value of the axial withdrawal parameter of the threaded part of the screw

d outer thread diameter of the screw

Point side penetration length of the threaded part of the screw in the rafter,  $l_{ef} \ge 40$  mm

 $\alpha$  Angle between grain and screw axis ( $\alpha \ge 30^{\circ}$ )

 $\rho_k$  characteristic density of the wood-based member [kg/m³]  $f_{head,d}$  design value of the head pull-through capacity of the screw

 $\begin{array}{ll} d_h & \text{head diameter} \\ k_1 & \text{min } \{1; 200/t_{HI}\} \\ k_2 & \text{min } \{1; \sigma_{10\%}/0, 12\} \end{array}$ 

thickness of the heat insulation [mm]

 $\sigma_{10\%}$  compressive stress of the heat insulation under 10 % deformation [N/mm<sup>2</sup>]

If equation  $k_1$  and  $k_2$  are considered, the deflection of the battens does not need to be considered. Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636 or an ETA or national provisions that apply at the installation site, particle board according to EN 312 or an ETA or national provisions that apply at the installation site, oriented strand board according to EN 300 or an ETA or national provisions that apply at the installation site and solid wood panels according to EN 13353 or an ETA or national provisions that apply at the installation site or cross laminated timber according to an ETA may be used.

| fischer Power-Fast and Construction Screws | Annex B2 of European Technical Assessment |  |  |
|--------------------------------------------|-------------------------------------------|--|--|
| Accessories                                | ETA-11/0027                               |  |  |

# Appendix 39 / 41

# Thermal insulation material on rafters with parallel screws perpendicular to the roof plane

Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, particleboard according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or European Technical Approval and solid wood panels according to EN 13353 may be used.

Characteristic load-carrying capacity of a screw loaded in shear:

$$F_{v,Rk} = min \begin{cases} f_{h,b,k} \cdot d \cdot t_{b} \\ f_{h,r,k} \cdot d \cdot t_{r} \\ \frac{f_{h,b,k} \cdot d \cdot \beta}{1+\beta} \cdot \left( \sqrt{4t_{il}^{2} + (2+\frac{1}{\beta})t_{b}^{2} + (2+\beta)t_{r}^{2} + 4t_{il}\left(t_{b} + t_{r}\right) + 2t_{b}t_{r}} - 2t_{il} - t_{b} - t_{r} \right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left( \sqrt{t_{il}^{2} + t_{il}t_{b} + \frac{t_{b}^{2}}{2} \left(1 + \frac{1}{\beta}\right) + \frac{M_{y,k}}{f_{h,b,k}} d} \left(1 + \frac{2}{\beta}\right) - t_{il} - \frac{t_{b}}{2} \right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left( \sqrt{t_{il}^{2} + t_{il}t_{r} + \frac{t_{r}^{2}}{2} (1 + \beta) + \frac{M_{y,k}}{f_{h,b,k}} d} \left(2 + \frac{1}{\beta}\right) - t_{il} - \frac{t_{r}}{2} \right) + \frac{F_{ax,Rk}}{4} \\ 1,15 \cdot \frac{f_{h,b,k} \cdot d}{1 + \beta} \left( \sqrt{\beta^{2}t_{il}^{2} + 4\beta(\beta + 1) \cdot \frac{M_{y,k}}{f_{h,b,k}} d} - \beta t_{il} \right) + \frac{F_{ax,Rk}}{4} \end{cases}$$

Where:

 $\begin{array}{ll} f_{h,b,k} & \quad & \text{Characteristic batten embedding strength } [N/mm^2] \\ f_{h,r,k} & \quad & \text{Characteristic rafter embedding strength } [N/mm^2] \end{array}$ 

 $\beta$   $f_{h,r,k}/f_{h,b,k}$ 

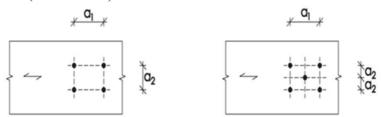
d Outer thread diameter [mm]

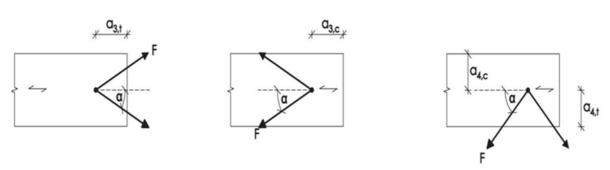
t<sub>b</sub> Batten thickness [mm]

t<sub>r</sub> The lower value of rafter thickness or screw penetration length [mm]

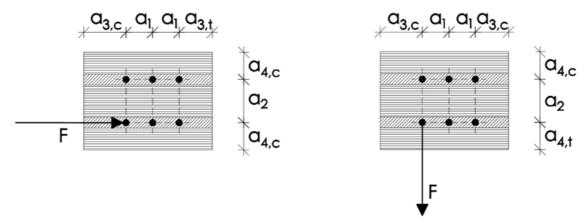
t<sub>il</sub> Interlayer thickness [mm]

M<sub>y,k</sub> Characteristic fastener yield moment [Nmm]


 $F_{ax,Rk}$  Characteristic axial tensile capacity of the screw [N]


| fischer Power-Fast and Construction Screws | Annex B2 of European Technical Assessment |  |  |
|--------------------------------------------|-------------------------------------------|--|--|
| Accessories                                | ETA-11/0027                               |  |  |

# Appendix 40 / 41


# Annex C Minimum distances and spacing

Axially or laterally loaded screws in the plane surface or edge surface of cross laminated timber Definition of spacing, end and edge distances in the plane surface unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber:



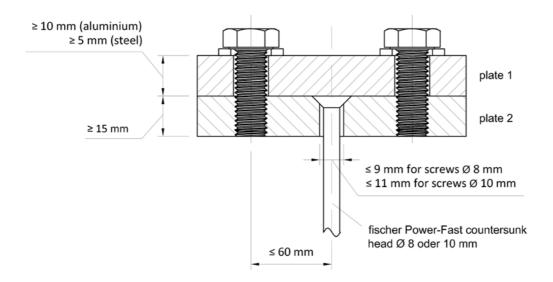


Definition of spacing, end and edge distances in the edge surface unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber.



For screws in the edge surface,  $a_1$  and  $a_3$  are parallel to the CLT plane surface,  $a_2$  and  $a_4$  perpendicular to CLT plane surface.

Table C1: Minimum spacing, end and edge distances of screws in the plane or edge surfaces of cross laminated timber


|                              | aı     | a <sub>3,t</sub> | a <sub>3,c</sub> | $a_2$   | a <sub>4,t</sub> | a <sub>4,c</sub> |
|------------------------------|--------|------------------|------------------|---------|------------------|------------------|
| Plane surface (see Figure 1) | 4 · d  | 6 · d            | 6 · d            | 2,5 · d | 6 · d            | 2,5 · d          |
| Edge surface (see Figure 2)  | 10 ⋅ d | 12 · d           | 7 · d            | 4 · d   | 6 · d            | 3 · d            |

| fischer Power-Fast and Construction Screws | Annex C of European Technical Assessment |  |  |
|--------------------------------------------|------------------------------------------|--|--|
| Minimum distances and spacings             | ETA-11/0027                              |  |  |

# Appendix 41 / 41

# Annex D Visualisation of the Power-Fast screw head clamped between two metal plates

Metric screws with hexagon head, countersunk head or cylindric head or threaded rods with nut and washer – each according to the structural requirements – at least 2xM8 (≥4.6 respectively A2-50) for the connection of the two plates made of aluminium (mechanical properties at least like e.g. EN AW 6082, EN AW 5083, EN AW 6060 or EN AC-44100); made of carbon steel or made of stainless steel (each at least S235).



Information for the structural analysis of the metric screw connection and the metal plates are not part of this European Technical Assessment.

(Fig. not to scale)

| fischer Power-Fast and Construction Screws        | Annex D of European Technical Assessment |  |  |
|---------------------------------------------------|------------------------------------------|--|--|
| clamping of the screw head for compression impact | ETA-11/0027                              |  |  |